stringtranslate.com

neuroligina

Neurolign y neurexina "apretón de manos"

La neuroligina ( NLGN ), una proteína de membrana de tipo I , es una proteína de adhesión celular en la membrana postsináptica que media en la formación y el mantenimiento de sinapsis entre neuronas . Las neuroliginas actúan como ligandos de las β-neurexinas , que son proteínas de adhesión celular ubicadas presinápticamente. La neuroligina y la β-neurexina "se dan la mano", lo que resulta en la conexión entre dos neuronas y la producción de una sinapsis. [2] Las neuroliginas también afectan las propiedades de las redes neuronales al especificar funciones sinápticas y median en la señalización reclutando y estabilizando componentes sinápticos clave. Las neuroliginas interactúan con otras proteínas postsinápticas para localizar receptores y canales de neurotransmisores en la densidad postsináptica a medida que la célula madura. [3] Además, las neuroliginas se expresan en tejidos periféricos humanos y se ha descubierto que desempeñan un papel en la angiogénesis . [4] En los seres humanos, las alteraciones en los genes que codifican las neuroliginas están implicadas en el autismo y otros trastornos cognitivos . [5] Los anticuerpos en una madre de embarazos masculinos anteriores contra la neuroligina 4 del cromosoma Y aumentan la probabilidad de homosexualidad en la descendencia masculina.

Estructura

Las neuroliginas se unen con la ayuda de Ca 2+ a los dominios LNS de α-neurexina (laminina, neurexina y unidades de plegado similares a globulinas transportadoras de hormonas sexuales) y al dominio LNS de β-neurexina que luego establece un código de reconocimiento transináptico heterófilo. [6] A través de la observación de la estructura cristalina de la neuroligina-1, se determinó que la neuroligina-1 forma un dímero de proteína cuando dos monómeros beta de neurexina-1 se unen a las dos superficies opuestas de la neuroligina-1. Esto forma un heterotetrámero, que contiene una interfaz para unir Ca 2+ . La interacción de neuroligina y neurexina para formar un heterotetrámero se controla mediante sitios empalmados alternativamente ubicados cerca de la interfaz de unión para Ca 2+ tanto en la neuroligina-1 como en la neurexina-1 beta. [7] Posteriormente, se confirmó la presencia de dímeros de neuroliginas nativas en las neuronas mediante detección bioquímica , que incluía heterodímeros compuestos de diferentes especies de neuroliginas, [8] aumentando la heterogeneidad potencial de los complejos de dímeros centrales de neuroliginas endógenas.

El dominio extracelular de NLGN consiste principalmente en una región homóloga a las acetilcolinesterasas , pero los aminoácidos importantes para la catálisis en AChE no se conservan en NLGN, que carecen de actividad esterasa . Además, esta región homóloga de AChE es crucial para el correcto funcionamiento de NLGN. [2]

Genética

Las neuroliginas se han identificado tanto en vertebrados como en invertebrados, incluidos humanos, roedores, pollos, Drosophila melanogaster , Caenorhabditis elegans , abejas y Aplysia . Se han encontrado tres genes para la expresión de neuroliginas en ratones y ratas, mientras que los humanos expresan cinco genes. [9] Drosophila expresa cuatro genes, las abejas expresan cinco genes y tanto C. elegans como Aplysia expresan un solo gen para neuroligina. [10]

Los genes de neuroligina conocidos en Homo sapiens incluyen NLGN1 , NLGN2 , NLGN3 , NLGN4X y NLGN5 (también conocido como NLGN4Y). Se ha descubierto que cada gen tiene influencias únicas en la transmisión sináptica.

Expresión

La expresión de neuroliginas puede diferir entre especies. La neuroligina 1 se expresa específicamente en el SNC en las sinapsis excitadoras. En humanos, la expresión de neuroligina 1 es baja antes del nacimiento y aumenta entre los días 1 a 8 posnatales y permanece alta hasta la edad adulta. Este aumento posnatal durante la sinaptogénesis activa corresponde a una mayor expresión de la proteína de densidad postsináptica-95 (PSD-95). La neuroligina 2 se concentra principalmente en las sinapsis inhibidoras del SNC, pero en ratones y humanos también puede expresarse en tejidos como el páncreas, los pulmones, los endotelios, el útero y el colon. La neuroligina 3 se expresa en las neuronas del SNC, así como en una variedad de células gliales en ratones y ratas y en el cerebro, el corazón, el músculo esquelético, la placenta y el páncreas en humanos. La neuroligina 4X se expresa en el corazón, el hígado, el músculo esquelético, el páncreas y en niveles bajos en el cerebro. La neuroligina 5 (o 4Y), ubicada en el cromosoma Y, tiene solo 19 aminoácidos de diferencia de la neuroligina 4X. [9] El ARNm de neuroligina está presente en las células endoteliales humanas de los grandes vasos sanguíneos [11] y en los ganglios de la raíz dorsal . [12]

Splicing alternativo

El empalme alternativo , una modificación que se produce después de la transcripción del ARNm, regula la selectividad de unión de las neuroliginas para las neurexinas α o β, así como la función de las sinapsis. El empalme alternativo en las neuroliginas se produce en el dominio funcional principal, la región homóloga de la acetilcolinesterasa. [13] Debido a que la neuroligina tiene dos sitios de empalme conservados en esta región, los sitios A y B, son posibles hasta cuatro isoformas diferentes para cada gen de neuroligina. [9] Las neurexinas también se someten a un empalme alternativo, y ciertas variantes de empalme de neuroliginas y neurexinas son más selectivas entre sí. El emparejamiento específico de variantes de empalme también afecta la función sináptica. Por ejemplo, las neuroliginas que carecen del inserto de empalme B y las β-neurexinas con el inserto S4 promueven la diferenciación de sinapsis GABAérgicas inhibidoras. Por otro lado, las neuroliginas con el inserto B y las β-neurexinas que carecen del inserto S4 promueven la diferenciación de las sinapsis glutamatérgicas excitadoras. El inserto A puede promover la localización de la neuroligina y su función en las sinapsis inhibidoras, pero se desconocen los mecanismos. [13]

Actividad con neurexina

La neurexina y la neuroligina trabajan juntas para reunir y mantener los componentes del citoesqueleto necesarios para localizar las vesículas sinápticas. La neurexina es necesaria para contener los canales de Ca 2+ dependientes de voltaje que se requieren para la liberación de vesículas, mientras que la neuroligina se une a la neurexina para localizar los receptores de neurotransmisores y las proteínas necesarios para la especialización postsináptica. En el sitio postsináptico, las neuroliginas están conectadas en red a proteínas especializadas que estimulan receptores y canales de neurotransmisores específicos para ocupar densamente regiones especializadas de la terminal postsináptica durante la maduración de la sinapsis. Debido a que todas las sinapsis en desarrollo contienen neurexinas y neuroliginas, las células en desarrollo pueden establecer muchas conexiones diferentes con otras células. [3]

Formación de sinapsis

La neuroligina es suficiente para formar nuevas terminales presinápticas funcionales in vitro. [9] Sin embargo, la evidencia sugiere que moléculas de adhesión adicionales, como las proteínas del dominio de inmunoglobulina y de la familia de las cadherinas, median el contacto inicial entre los axones y las dendritas para una sinapsis. Las neurexinas y neuroliginas refuerzan entonces el contacto. [13]

Además de la selectividad de las variantes de empalme, los niveles de neuroliginas, neurexinas y otras proteínas interactuantes presentes en las membranas pre y postsinápticas influyen en la diferenciación y el equilibrio de las sinapsis. A medida que las sinapsis se forman durante la sinaptogénesis , se diferencian en una de dos categorías: excitadoras o inhibidoras. Las sinapsis excitadoras aumentan la probabilidad de activar un potencial de acción en la neurona postsináptica y, a menudo, son glutamatérgicas , o sinapsis en las que se libera el neurotransmisor glutamato. Las sinapsis inhibidoras disminuyen la probabilidad de activar un potencial de acción en la neurona postsináptica y, a menudo, son GABAérgicas , en las que se libera el neurotransmisor GABA. Especialmente durante el desarrollo temprano, las neuronas deben recibir un equilibrio apropiado entre la entrada sináptica excitadora y la inhibidora, lo que se conoce como relación E/I. De hecho, se cree que un desequilibrio en la relación E/I está implicado en los trastornos del espectro autista. [14]

La neuroligina 1 se localiza en las sinapsis excitadoras, la neuroligina 2 en las sinapsis inhibidoras y la neuroligina 3 en ambas. La reducción de los niveles de neuroliginas 1, 2 y 3 da como resultado una fuerte reducción de la entrada inhibidora pero una pequeña reducción de la entrada excitadora. [13] Además, las neuroliginas interactúan con PSD-95 , una proteína intracelular que ancla las proteínas sinápticas en la densidad postsináptica de las sinapsis excitadoras, y la gefirina , la proteína de andamiaje respectiva de las postsinapsis inhibidoras. [15] Además, las neuroliginas 2 y 4 interactúan específicamente con la colibistina, una proteína que regula la localización de la gefirina. El nivel de PSD-95 parece influir en el equilibrio de las entradas excitadoras e inhibidoras. Un aumento en la proporción de PSD-95 a neuroligina dio como resultado un aumento en la proporción E/I, y una disminución en la proporción de PSD-95/neuroligina tuvo el efecto opuesto. [14] Además, la sobreexpresión de PSD-95 redirige la neuroligina-2 de las sinapsis excitadoras a las inhibidoras, fortaleciendo la entrada excitadora y reduciendo la entrada inhibidora. [13] Estas interacciones de neuroligina, neurexina y proteínas interactivas como PSD-95 apuntan a un posible mecanismo regulador que controla el desarrollo y el equilibrio de las sinapsis excitadoras e inhibidoras, gobernadas por mecanismos de retroalimentación homeostática. [14]

Significación clínica

La disfunción de la neuroligina se ha implicado en los trastornos del espectro autista . Se han detectado diferentes alteraciones genéticas en los genes de neuroligina en pacientes con TEA, incluidas mutaciones puntuales , mutaciones sin sentido y deleciones internas . [11] En estudios realizados en miembros de la familia con autismo ligado al cromosoma X, se han identificado mutaciones específicas de NLGN3 y NLGN4. Se ha demostrado que estas mutaciones afectan el funcionamiento de las neuroliginas y se ha demostrado que interfieren con la transmisión sináptica. 19 de las 69 proteínas conocidas mutadas en el autismo ligado al cromosoma X codifican proteínas postsinápticas, incluidas las neuroliginas.

Además, los anticuerpos maternos contra la neuroligina NLGN4Y del cromosoma Y se han implicado en el desarrollo fetal de la homosexualidad masculina. [dieciséis]

Mutaciones NLGN3

Se ha clonado un gen NLGN3 mutado, R451C. Se ha demostrado que el mutante causa un tráfico defectuoso de neuroliginas y retención de la proteína mutante en el retículo endoplásmico . [17] La ​​pequeña cantidad de proteína mutante que alcanzó la membrana celular demostró una actividad de unión disminuida para la neurexina-1, consistente con una pérdida de función. [18] El gen mutante ha sido clonado e introducido en ratones, lo que resultó en interacciones sociales deterioradas, capacidades de aprendizaje espacial mejoradas y una mayor transmisión sináptica inhibidora. La eliminación de NLGN3 no produjo estos efectos, lo que indica que R451C es una mutación de ganancia de función. Esto respalda la afirmación de que una mayor transmisión sináptica inhibidora puede contribuir a los trastornos del espectro autista en humanos. [19]

mutaciones NLGN4

También se han encontrado mutaciones en NLGN4 en personas con autismo ligado al cromosoma X. Se ha descubierto que una mutación de cambio de marco 1186T causa un codón de parada temprano y un truncamiento prematuro de proteínas. Esta mutación da como resultado la retención intracelular de proteínas mutantes, lo que posiblemente causa un deterioro de la función de una molécula de adhesión de células sinápticas [17] y modifica la unión de la proteína neuroligina a sus parejas presinápticas, las neurexinas, interrumpiendo así la función sináptica esencial. [20] Otras mutaciones de NLGN4 encontradas en relación con los trastornos del espectro autista incluyen una deleción de 2 pb, 1253delAG, en el gen NLGN4, que provoca un cambio de marco y un codón de parada prematuro. [21] Otra mutación es una deleción hemicigota en el gen NLGN4 que abarca los exones 4, 5 y 6. Se predijo que la deleción de 757 kb daría como resultado una proteína significativamente truncada. [22]

Ver también

Referencias

  1. ^ Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P, Bourne Y, Marchot P (diciembre de 2007). "Análisis estructural de la proteína sináptica neuroligina y su complejo beta-neurexina: determinantes del plegamiento y adhesión celular". Neurona . 56 (6): 979–91. doi :10.1016/j.neuron.2007.11.013. PMC  2703725 . PMID  18093521.
  2. ^ ab Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (junio de 2000). "La neuroligina expresada en células no neuronales desencadena el desarrollo presináptico al contactar los axones". Celúla . 101 (6): 657–69. doi : 10.1016/S0092-8674(00)80877-6 . PMID  10892652.
  3. ^ ab Purves, Dale; Agustín, Jorge; Fitzpatrick, David; Salón, William C.; LaMantia, Anthony-Samual; Blanco, Leonard E. (2012). Neurociencia Quinta Edición. Sunderland, MA: Sinauer Associates . págs. 521–522. ISBN 978-0-87893-695-3.
  4. ^ Bottos A, Destro E, Rissone A, Graziano S, Cordara G, Assenzio B, Cera MR, Mascia L, Bussolino F, Arese M (diciembre de 2009). "Las proteínas sinápticas neurexinas y neuroliginas se expresan ampliamente en el sistema vascular y contribuyen a sus funciones". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 106 (49): 20782–7. Código bibliográfico : 2009PNAS..10620782B. doi : 10.1073/pnas.0809510106 . PMC 2791601 . PMID  19926856. 
  5. ^ Südhof TC (octubre de 2008). "Las neuroliginas y neurexinas vinculan la función sináptica con la enfermedad cognitiva". Naturaleza . 455 (7215): 903–11. Código Bib :2008Natur.455..903S. doi : 10.1038/naturaleza07456. PMC 2673233 . PMID  18923512. 
  6. ^ Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P, Bourne Y, Marchot P (diciembre de 2007). "Análisis estructural de la proteína sináptica neuroligina y su complejo beta-neurexina: determinantes del plegamiento y adhesión celular". Neurona . 56 (6): 979–91. doi :10.1016/j.neuron.2007.11.013. PMC 2703725 . PMID  18093521. 
  7. ^ Araç D, Boucard AA, Ozkan E, Strop P, Newell E, Südhof TC, Brunger AT (diciembre de 2007). "Las estructuras de neuroligina-1 y el complejo beta neuroligina-1/neurexina-1 revelan interacciones proteína-proteína y proteína-Ca2+ específicas". Neurona . 56 (6): 992–1003. doi : 10.1016/j.neuron.2007.12.002 . PMID  18093522.
  8. ^ Poulopoulos A, Soykan T, Tuffy LP, Hammer M, Varoqueaux F, Brose N (septiembre de 2012). "Homodimerización y heterodimerización específica de isoformas de neuroliginas". La revista bioquímica . 446 (2): 321–30. doi :10.1042/BJ20120808. PMID  22671294.
  9. ^ abcd Lisé MF, El-Husseini A (agosto de 2006). "Las familias de neuroliginas y neurexinas: de la estructura a la función en la sinapsis". Ciencias de la vida celulares y moleculares . 63 (16): 1833–49. doi :10.1007/s00018-006-6061-3. PMC 11136152 . PMID  16794786. S2CID  1720692. 
  10. ^ Knight D, Xie W, Boulianne GL (diciembre de 2011). "Neurexinas y neuroliginas: conocimientos recientes de invertebrados". Neurobiología Molecular . 44 (3): 426–40. doi :10.1007/s12035-011-8213-1. PMC 3229692 . PMID  22037798. 
  11. ^ ab Bottos A, Rissone A, Bussolino F, Arese M (agosto de 2011). "Neurexinas y neuroliginas: las sinapsis miran desde el sistema nervioso". Ciencias de la vida celulares y moleculares . 68 (16): 2655–66. doi :10.1007/s00018-011-0664-z. PMC 11115133 . PMID  21394644. S2CID  78835. 
  12. ^ Lorenzo LE, Godin AG, Wang F, St-Louis M, Carbonetto S, Wiseman PW, Ribeiro-da-Silva A, De Koninck Y (junio de 2014). "Los grupos de gefirina están ausentes en las terminales aferentes primarias de pequeño diámetro a pesar de la presencia de receptores GABA (A)". La Revista de Neurociencia . 34 (24): 8300–17. doi : 10.1523/JNEUROSCI.0159-14.2014 . PMC 6608243 . PMID  24920633. 
  13. ^ abcde Craig AM, Kang Y (febrero de 2007). "Señalización de neurexina-neuroligina en el desarrollo de sinapsis". Opinión actual en neurobiología . 17 (1): 43–52. doi :10.1016/j.conb.2007.01.011. PMC 2820508 . PMID  17275284. 
  14. ^ abc Levinson JN, El-Husseini A (octubre de 2005). "Construcción de sinapsis excitadoras e inhibidoras: equilibrio de asociaciones de neuroliginas". Neurona . 48 (2): 171–4. doi : 10.1016/j.neuron.2005.09.017 . PMID  16242398.
  15. ^ Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F (septiembre de 2009). "La neuroligina 2 impulsa el ensamblaje postsináptico en las sinapsis inhibidoras perisomáticas a través de gefirina y colibistina". Neurona . 63 (5): 628–42. doi : 10.1016/j.neuron.2009.08.023 . PMID  19755106.
  16. ^ Bogaert AF, Skorska MN, Wang C, Gabrie J, MacNeil AJ, Hoffarth MR, VanderLaan DP, Zucker KJ, Blanchard R (enero de 2018). "Homosexualidad masculina y respuesta inmune materna a la proteína ligada al Y NLGN4Y". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 115 (2): 302–306. Código Bib : 2018PNAS..115..302B. doi : 10.1073/pnas.1705895114 . PMC 5777026 . PMID  29229842. 
  17. ^ ab Chih B, Afridi SK, Clark L, Scheiffele P (julio de 2004). "Las mutaciones asociadas a trastornos conducen a la inactivación funcional de neuroliginas". Genética Molecular Humana . 13 (14): 1471–7. doi : 10.1093/hmg/ddh158 . PMID  15150161.
  18. ^ Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, Ellisman MH, Taylor P (mayo de 2004). "La mutación Arg451Cys-neuroligin-3 asociada con el autismo revela un defecto en el procesamiento de proteínas". La Revista de Neurociencia . 24 (20): 4889–93. doi : 10.1523/JNEUROSCI.0468-04.2004 . PMC 6729460 . PMID  15152050. 
  19. ^ Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC (octubre de 2007). "Una mutación de neuroligina-3 implicada en el autismo aumenta la transmisión sináptica inhibidora en ratones". Ciencia . 318 (5847): 71–6. Código Bib : 2007 Ciencia... 318... 71T. doi : 10.1126/ciencia.1146221. PMC 3235367 . PMID  17823315. 
  20. ^ Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (mayo de 2003). "Las mutaciones de los genes ligados al cromosoma X que codifican las neuroliginas NLGN3 y NLGN4 están asociadas con el autismo". Genética de la Naturaleza . 34 (1): 27–9. doi :10.1038/ng1136. PMC 1925054 . PMID  12669065. 
  21. ^ Laumonnier F, Cuthbert PC, Grant SG (febrero de 2007). "El papel de los complejos neuronales en las enfermedades cerebrales humanas ligadas al cromosoma X". Revista Estadounidense de Genética Humana . 80 (2): 205–20. doi :10.1086/511441. PMC 1785339 . PMID  17236127. 
  22. ^ Lawson-Yuen A, Saldivar JS, Sommer S, Picker J (mayo de 2008). "Deleción familiar dentro de NLGN4 asociada con el autismo y el síndrome de Tourette". Revista europea de genética humana . 16 (5): 614–8. doi : 10.1038/sj.ejhg.5202006 . PMID  18231125.