stringtranslate.com

Núcleo galáctico activo

Un núcleo galáctico activo ( AGN ) es una región compacta en el centro de una galaxia que emite una cantidad significativa de energía a través del espectro electromagnético , con características que indican que esta luminosidad no es producida por las estrellas . Tales emisiones no estelares en exceso se han observado en las bandas de ondas de radio , microondas , infrarrojos , ópticos , ultravioleta , rayos X y rayos gamma . Una galaxia que alberga un AGN se llama galaxia activa . Se teoriza que la radiación no estelar de un AGN es el resultado de la acreción de materia por un agujero negro supermasivo en el centro de su galaxia anfitriona.

Los núcleos galácticos activos son las fuentes persistentes más luminosas de radiación electromagnética del universo y, como tales, pueden utilizarse como medio para descubrir objetos distantes; su evolución en función del tiempo cósmico también impone restricciones a los modelos del cosmos .

Las características observadas de un AGN dependen de varias propiedades, como la masa del agujero negro central, la tasa de acreción de gas en el agujero negro, la orientación del disco de acreción , el grado de oscurecimiento del núcleo por el polvo y la presencia o ausencia de chorros .

Se han definido numerosas subclases de AGN en función de sus características observadas; los AGN más potentes se clasifican como cuásares . Un blazar es un AGN con un chorro que apunta hacia la Tierra, en el que la radiación del chorro se ve potenciada por un haz relativista .

Historia

El cuásar 3C 273 observado por el telescopio espacial Hubble . El chorro relativista de 3C 273 aparece a la izquierda del cuásar brillante y las cuatro líneas rectas que apuntan hacia afuera desde la fuente central son picos de difracción causados ​​por la óptica del telescopio.

Durante la primera mitad del siglo XX, las observaciones fotográficas de galaxias cercanas detectaron algunas firmas características de emisión de AGN, aunque todavía no había una comprensión física de la naturaleza del fenómeno AGN. Algunas observaciones tempranas incluyeron la primera detección espectroscópica de líneas de emisión de los núcleos de NGC 1068 y Messier 81 por Edward Fath (publicada en 1909), [1] y el descubrimiento del chorro en Messier 87 por Heber Curtis (publicado en 1918). [2] Estudios espectroscópicos posteriores realizados por astrónomos como Vesto Slipher , Milton Humason y Nicholas Mayall notaron la presencia de líneas de emisión inusuales en algunos núcleos de galaxias. [3] [4] [5] [6] En 1943, Carl Seyfert publicó un artículo en el que describía observaciones de galaxias cercanas que tenían núcleos brillantes que eran fuentes de líneas de emisión inusualmente anchas. [7] Las galaxias observadas como parte de este estudio incluyeron NGC 1068 , NGC 4151 , NGC 3516 y NGC 7469. Las galaxias activas como estas se conocen como galaxias Seyfert en honor al trabajo pionero de Seyfert.

El desarrollo de la radioastronomía fue un catalizador importante para la comprensión de los AGN. Algunas de las primeras fuentes de radio detectadas son galaxias elípticas activas cercanas como Messier 87 y Centaurus A. [ 8] Otra fuente de radio, Cygnus A , fue identificada por Walter Baade y Rudolph Minkowski como una galaxia distorsionada por las mareas con un espectro de líneas de emisión inusual , con una velocidad de recesión de 16.700 kilómetros por segundo. [9] El estudio de radio 3C condujo a un mayor progreso en el descubrimiento de nuevas fuentes de radio, así como a la identificación de las fuentes de luz visible asociadas con la emisión de radio. En las imágenes fotográficas, algunos de estos objetos tenían una apariencia casi puntual o cuasi estelar, y se clasificaron como fuentes de radio cuasi estelares (más tarde abreviadas como "cuásares").

El astrofísico armenio soviético Viktor Ambartsumian introdujo los núcleos galácticos activos a principios de los años 1950. [10] En la Conferencia Solvay de Física de 1958, Ambartsumian presentó un informe en el que sostenía que "las explosiones en los núcleos galácticos hacen que se expulsen grandes cantidades de masa. Para que se produzcan estas explosiones, los núcleos galácticos deben contener cuerpos de enorme masa y naturaleza desconocida. A partir de ese momento, los núcleos galácticos activos (AGN) se convirtieron en un componente clave en las teorías de la evolución galáctica". [11] Su idea fue aceptada inicialmente con escepticismo. [12] [13]

Un avance importante fue la medición del corrimiento al rojo del cuásar 3C 273 por Maarten Schmidt , publicada en 1963. [14] Schmidt observó que si este objeto era extragaláctico (fuera de la Vía Láctea , a una distancia cosmológica), entonces su gran corrimiento al rojo de 0,158 implicaba que era la región nuclear de una galaxia unas 100 veces más potente que otras radiogalaxias que se habían identificado. Poco después, se utilizaron espectros ópticos para medir los corrimientos al rojo de un número creciente de cuásares, incluido 3C 48 , incluso más distante con un corrimiento al rojo de 0,37. [15]

La enorme luminosidad de estos cuásares, así como sus inusuales propiedades espectrales, indicaban que su fuente de energía no podían ser estrellas ordinarias. En los artículos de Edwin Salpeter y Yakov Zeldovich de 1964 se sugirió que la acreción de gas sobre un agujero negro supermasivo era la fuente de energía de los cuásares . [16] En 1969, Donald Lynden-Bell propuso que las galaxias cercanas contienen agujeros negros supermasivos en sus centros como reliquias de cuásares "muertos", y que la acreción de agujeros negros era la fuente de energía para la emisión no estelar en las galaxias Seyfert cercanas. [17] En los años 1960 y 1970, las primeras observaciones astronómicas de rayos X demostraron que las galaxias Seyfert y los cuásares son fuentes poderosas de emisión de rayos X, que se originan en las regiones internas de los discos de acreción de agujeros negros.

En la actualidad, los AGN son un tema importante de investigación astrofísica, tanto observacional como teórica . La investigación sobre AGN abarca estudios observacionales para encontrar AGN en amplios rangos de luminosidad y corrimiento al rojo, el examen de la evolución cósmica y el crecimiento de los agujeros negros, estudios de la física de la acreción de agujeros negros y la emisión de radiación electromagnética de los AGN, el examen de las propiedades de los chorros y las salidas de materia de los AGN, y el impacto de la acreción de agujeros negros y la actividad de los cuásares en la evolución de las galaxias .

Modelos

Desde finales de los años 1960 se ha argumentado [18] que un AGN debe ser alimentado por la acreción de masa en agujeros negros masivos (10 6 a 10 10 veces la masa solar ). Los AGN son compactos y persistentemente extremadamente luminosos. La acreción puede potencialmente dar una conversión muy eficiente de energía potencial y cinética a radiación, y un agujero negro masivo tiene una alta luminosidad de Eddington y, como resultado, puede proporcionar la alta luminosidad persistente observada. Ahora se cree que existen agujeros negros supermasivos en los centros de la mayoría, si no de todas, las galaxias masivas, ya que la masa del agujero negro se correlaciona bien con la dispersión de velocidad del bulbo galáctico (la relación M-sigma ) o con la luminosidad del bulbo. [19] Por lo tanto, se esperan características similares a las de los AGN siempre que un suministro de material para la acreción entre en la esfera de influencia del agujero negro central.

Disco de acreción

En el modelo estándar de AGN, el material frío cerca de un agujero negro forma un disco de acreción . Los procesos disipativos en el disco de acreción transportan materia hacia adentro y momento angular hacia afuera, mientras hacen que el disco de acreción se caliente. El espectro esperado de un disco de acreción alcanza su pico en la banda de ondas óptica-ultravioleta; además, se forma una corona de material caliente sobre el disco de acreción y puede dispersar fotones mediante Compton inverso hasta energías de rayos X. La radiación del disco de acreción excita material atómico frío cerca del agujero negro y este a su vez irradia en líneas de emisión particulares . Una gran fracción de la radiación del AGN puede ser oscurecida por gas interestelar y polvo cerca del disco de acreción, pero (en una situación de estado estable) esto será re-irradiado en alguna otra banda de ondas, muy probablemente el infrarrojo.

Chorros relativistas

Imagen tomada por el telescopio espacial Hubble de un chorro de 5000 años luz de longitud expulsado de la galaxia activa M87 . La radiación azul del sincrotrón contrasta con la luz amarilla de las estrellas de la galaxia anfitriona.

Algunos discos de acreción producen chorros de salidas gemelas, altamente colimadas y rápidas que emergen en direcciones opuestas desde cerca del disco. La dirección de la eyección del chorro está determinada por el eje de momento angular del disco de acreción o por el eje de giro del agujero negro. El mecanismo de producción del chorro y, de hecho, la composición del chorro a escalas muy pequeñas no se entienden en la actualidad debido a que la resolución de los instrumentos astronómicos es demasiado baja. Los chorros tienen sus efectos observacionales más obvios en la banda de ondas de radio, donde se puede utilizar la interferometría de línea de base muy larga para estudiar la radiación de sincrotrón que emiten a resoluciones de escalas subparsec . Sin embargo, irradian en todas las bandas de ondas desde la radio hasta el rango de rayos gamma a través del sincrotrón y el proceso de dispersión Compton inversa , y por lo tanto los chorros de AGN son una segunda fuente potencial de cualquier radiación continua observada.

AGN radiativamente ineficiente

Existe una clase de soluciones "radiativamente ineficientes" para las ecuaciones que gobiernan la acreción. Existen varias teorías, pero la más conocida de ellas es el Flujo de Acreción Dominado por Advección (ADAF). [20] En este tipo de acreción, que es importante para tasas de acreción muy por debajo del límite de Eddington , la materia que se acrecienta no forma un disco delgado y, en consecuencia, no irradia de manera eficiente la energía que adquirió al acercarse al agujero negro. La acreción radiativamente ineficiente se ha utilizado para explicar la falta de una fuerte radiación de tipo AGN de ​​los agujeros negros masivos en los centros de galaxias elípticas en cúmulos, donde de lo contrario podríamos esperar altas tasas de acreción y, en consecuencia, altas luminosidades. [21] Se esperaría que los AGN radiativamente ineficientes carecieran de muchas de las características características de los AGN estándar con un disco de acreción.

Aceleración de partículas

Los AGN son una fuente candidata de rayos cósmicos de energía alta y ultra alta (ver también Mecanismo centrífugo de aceleración ) .

Características observacionales

Entre las muchas características interesantes de los AGN: [22]

Tipos de galaxias activas

Es conveniente dividir los AGN en dos clases, llamadas convencionalmente radio-silenciosos y radio-fuertes. Los objetos radio-fuertes tienen contribuciones de emisión tanto de los chorros como de los lóbulos que inflan los chorros. Estas contribuciones de emisión dominan la luminosidad del AGN en longitudes de onda de radio y posiblemente en algunas o todas las demás longitudes de onda. Los objetos radio-silenciosos son más simples ya que el chorro y cualquier emisión relacionada con el chorro se pueden ignorar en todas las longitudes de onda.

La terminología de AGN suele ser confusa, ya que las distinciones entre los diferentes tipos de AGN a veces reflejan diferencias históricas en cómo se descubrieron o clasificaron inicialmente los objetos, en lugar de diferencias físicas reales.

AGN sin interferencias de radio

AGN con radio muy alta

Existen varios subtipos de núcleos galácticos activos y radioactivamente ruidosos.

Unificación de especies de AGN

Modelos AGN unificados

Los modelos unificados proponen que las diferentes clases observacionales de AGN son un único tipo de objeto físico observado en diferentes condiciones. Los modelos unificados que se prefieren actualmente son "modelos unificados basados ​​en la orientación", lo que significa que proponen que las diferencias aparentes entre los diferentes tipos de objetos surgen simplemente debido a sus diferentes orientaciones hacia el observador. [31] [32] Sin embargo, son objeto de debate (véase más adelante).

Unificación en silencio por radio

En condiciones de baja luminosidad, los objetos que se unifican son las galaxias Seyfert. Los modelos de unificación proponen que en las galaxias Seyfert 1 el observador tiene una visión directa del núcleo activo. En las galaxias Seyfert 2, el núcleo se observa a través de una estructura que lo oscurece y que impide una visión directa del continuo óptico, la región de líneas anchas o la emisión de rayos X (suaves). La idea clave de los modelos de acreción dependientes de la orientación es que los dos tipos de objetos pueden ser iguales si solo se observan ciertos ángulos con respecto a la línea de visión. La imagen estándar es la de un toro de material que oscurece que rodea el disco de acreción. Debe ser lo suficientemente grande como para oscurecer la región de líneas anchas, pero no lo suficientemente grande como para oscurecer la región de líneas estrechas, que se ve en ambas clases de objetos. Las galaxias Seyfert 2 se ven a través del toro. Fuera del toro hay material que puede dispersar parte de la emisión nuclear en nuestra línea de visión, lo que nos permite ver algo de continuo óptico y de rayos X y, en algunos casos, líneas de emisión anchas, que están fuertemente polarizadas, lo que demuestra que se han dispersado y prueba que algunas estrellas Seyfert 2 realmente contienen estrellas Seyfert 1 ocultas. Las observaciones infrarrojas de los núcleos de las estrellas Seyfert 2 también respaldan esta idea.

En condiciones de mayor luminosidad, los cuásares sustituyen a los Seyfert 1, pero, como ya se ha mencionado, los correspondientes "cuásares 2" son difíciles de detectar por el momento. Si no tuvieran el componente de dispersión de los Seyfert 2, serían difíciles de detectar excepto a través de su emisión luminosa de líneas estrechas y rayos X duros.

Unificación a todo volumen

Históricamente, el trabajo sobre la unificación de radio-ruidos se ha concentrado en cuásares de radio-ruidos de alta luminosidad. Estos pueden unificarse con radiogalaxias de línea estrecha de una manera directamente análoga a la unificación Seyfert 1/2 (pero sin la complicación de un componente de reflexión: las radiogalaxias de línea estrecha no muestran un continuo óptico nuclear o un componente de rayos X reflejado, aunque ocasionalmente muestran una emisión de línea ancha polarizada). Las estructuras de radio a gran escala de estos objetos proporcionan evidencia convincente de que los modelos unificados basados ​​en la orientación realmente son ciertos. [33] [34] [35] La evidencia de rayos X, donde está disponible, respalda la imagen unificada: las radiogalaxias muestran evidencia de oscurecimiento por un toro, mientras que los cuásares no, aunque se debe tener cuidado ya que los objetos de radio-ruidos también tienen un componente suave relacionado con chorros no absorbidos, y se necesita alta resolución para separar la emisión térmica del entorno de gas caliente a gran escala de las fuentes. [36] En ángulos muy pequeños respecto a la línea de visión, predomina la radiación relativista y vemos un blazar de alguna variedad.

Sin embargo, la población de radiogalaxias está completamente dominada por objetos de baja luminosidad y baja excitación. Estos no muestran fuertes líneas de emisión nuclear, anchas o estrechas, tienen continuos ópticos que parecen estar completamente relacionados con chorros, [28] y su emisión de rayos X también es consistente con provenir puramente de un chorro, sin ningún componente nuclear fuertemente absorbido en general. [29] Estos objetos no pueden unificarse con los cuásares, a pesar de que incluyen algunos objetos de alta luminosidad cuando se observa la emisión de radio, ya que el toro nunca puede ocultar la región de línea estrecha en la medida requerida, y dado que los estudios infrarrojos muestran que no tienen un componente nuclear oculto: [37] de hecho, no hay evidencia de un toro en estos objetos en absoluto. Lo más probable es que formen una clase separada en la que solo es importante la emisión relacionada con chorros. En pequeños ángulos con la línea de visión, aparecerán como objetos BL Lac. [38]

Crítica a la unificación de la radio silenciosa

En la literatura reciente sobre AGN, que es objeto de un intenso debate, un conjunto cada vez mayor de observaciones parecen estar en conflicto con algunas de las predicciones clave del Modelo Unificado, por ejemplo, que cada Seyfert 2 tiene un núcleo Seyfert 1 oscurecido (una región de líneas anchas oculta).

Por lo tanto, no se puede saber si el gas en todas las galaxias Seyfert 2 está ionizado debido a la fotoionización de una única fuente continua no estelar en el centro o debido a la ionización de choque de, por ejemplo, intensos estallidos estelares nucleares. Los estudios espectropolarimétricos [39] revelan que solo el 50% de las Seyfert 2 muestran una región de línea ancha oculta y, por lo tanto, dividen las galaxias Seyfert 2 en dos poblaciones. Las dos clases de poblaciones parecen diferir por su luminosidad, donde las Seyfert 2 sin una región de línea ancha oculta son generalmente menos luminosas. [40] Esto sugiere que la ausencia de la región de línea ancha está relacionada con un bajo coeficiente de Eddington y no con el oscurecimiento.

El factor de cobertura del toro podría jugar un papel importante. Algunos modelos de toro [41] [42] predicen cómo los Seyfert 1 y Seyfert 2 pueden obtener diferentes factores de cobertura a partir de una dependencia de la luminosidad y la tasa de acreción del factor de cobertura del toro, algo que está respaldado por estudios en rayos X de AGN. [43] Los modelos también sugieren una dependencia de la tasa de acreción de la región de línea ancha y proporcionan una evolución natural desde motores más activos en Seyfert 1 hasta Seyfert 2 más "muertos" [44] y pueden explicar la ruptura observada del modelo unificado a bajas luminosidades [45] y la evolución de la región de línea ancha. [46]

Si bien los estudios de AGN individuales muestran desviaciones importantes respecto de las expectativas del modelo unificado, los resultados de las pruebas estadísticas han sido contradictorios. La deficiencia más importante de las pruebas estadísticas mediante comparaciones directas de muestras estadísticas de Seyfert 1 y Seyfert 2 es la introducción de sesgos de selección debido a criterios de selección anisotrópicos. [47] [48]

El estudio de las galaxias vecinas en lugar de los propios AGN [49] [50] [51] sugirió por primera vez que el número de vecinos era mayor para Seyfert 2 que para Seyfert 1, en contradicción con el Modelo Unificado. Hoy, habiendo superado las limitaciones previas de tamaños de muestra pequeños y selección anisotrópica, los estudios de vecinos de cientos a miles de AGN [52] han demostrado que los vecinos de Seyfert 2 son intrínsecamente más polvorientos y más formadores de estrellas que Seyfert 1 y una conexión entre el tipo de AGN, la morfología de la galaxia anfitriona y el historial de colisiones. Además, los estudios de agrupamiento angular [53] de los dos tipos de AGN confirman que residen en diferentes entornos y muestran que residen dentro de halos de materia oscura de diferentes masas. Los estudios del entorno de AGN están en línea con los modelos de unificación basados ​​en la evolución [54] donde Seyfert 2 se transforman en Seyfert 1 durante la fusión, lo que respalda los modelos anteriores de activación impulsada por la fusión de los núcleos de Seyfert 1.

Aunque todavía existe controversia sobre la solidez de cada estudio individual, todos coinciden en que los modelos más simples basados ​​en el ángulo de visión de la unificación de AGN son incompletos. Seyfert-1 y Seyfert-2 parecen diferir en la formación de estrellas y la potencia del motor AGN. [55]

Si bien todavía puede ser válido que un Seyfert 1 oscurecido pueda aparecer como un Seyfert 2, no todos los Seyfert 2 deben albergar un Seyfert 1 oscurecido. Comprender si es el mismo motor el que impulsa a todos los Seyfert 2, la conexión con AGN de ​​radio-alto volumen, los mecanismos de la variabilidad de algunos AGN que varían entre los dos tipos en escalas de tiempo muy cortas y la conexión del tipo de AGN con el entorno de pequeña y gran escala siguen siendo cuestiones importantes para incorporar en cualquier modelo unificado de núcleos galácticos activos.

Un estudio de Swift/BAT AGN publicado en julio de 2022 [56] agrega respaldo al "modelo de unificación regulado por radiación" esbozado en 2017. [57] En este modelo, la tasa de acreción relativa (denominada "coeficiente de Eddington") del agujero negro tiene un impacto significativo en las características observadas del AGN. Los agujeros negros con coeficientes de Eddington más altos parecen tener más probabilidades de no estar oscurecidos, habiendo eliminado material que los oscurecía localmente en un período de tiempo muy corto.

Usos cosmológicos y evolución

Durante mucho tiempo, las galaxias activas ostentaron todos los récords de objetos con el mayor corrimiento al rojo conocido, tanto en el espectro óptico como en el espectro de radio, debido a su elevada luminosidad. Todavía tienen un papel que desempeñar en los estudios del universo primitivo, pero ahora se reconoce que un AGN ofrece una imagen muy sesgada de la galaxia "típica" de alto corrimiento al rojo.

La mayoría de las clases luminosas de AGN (radio-fuertes y radio-silenciosos) parecen haber sido mucho más numerosas en el universo primitivo. Esto sugiere que los agujeros negros masivos se formaron en una etapa temprana y que las condiciones para la formación de AGN luminosos eran más comunes en el universo primitivo, como una disponibilidad mucho mayor de gas frío cerca del centro de las galaxias que en la actualidad. También implica que muchos objetos que alguna vez fueron cuásares luminosos ahora son mucho menos luminosos o completamente inactivos. La evolución de la población de AGN de ​​baja luminosidad se entiende mucho menos debido a la dificultad de observar estos objetos a altos desplazamientos al rojo.

Véase también

Referencias

  1. ^ Fath, Edward A. (1909). "Los espectros de algunas nebulosas espirales y cúmulos globulares de estrellas". Boletín del Observatorio Lick . 5 : 71. Bibcode :1909LicOB...5...71F. doi :10.5479/ADS/bib/1909LicOB.5.71F. hdl : 2027/uc1.c2914873 .
  2. ^ Curtis, Heber D. (1918). "Descripciones de 762 nebulosas y cúmulos fotografiados con el reflector Crossley". Publicaciones del Observatorio Lick . 13 : 9. Bibcode :1918PLicO..13....9C.
  3. ^ Slipher, Vesto (1917). "El espectro y la velocidad de la nebulosa NGC 1068 (M 77)". Boletín del Observatorio Lowell . 3 : 59. Código Bibliográfico :1917LowOB...3...59S.
  4. ^ Humason, Milton L. (1932). "El espectro de emisión de la nebulosa extragaláctica NGC 1275". Publicaciones de la Sociedad Astronómica del Pacífico . 44 (260): 267. Bibcode :1932PASP...44..267H. doi : 10.1086/124242 .
  5. ^ Mayall, Nicholas U. (1934). "El espectro de la nebulosa espiral NGC 4151". Publicaciones de la Sociedad Astronómica del Pacífico . 46 (271): 134. Bibcode :1934PASP...46..134M. doi : 10.1086/124429 . S2CID  119741164.
  6. ^ Mayall, Nicholas U. (1939). "La presencia de λ3727 [O II] en los espectros de nebulosas extragalácticas". Boletín del Observatorio Lick . 19 : 33. Bibcode :1939LicOB..19...33M. doi : 10.5479/ADS/bib/1939LicOB.19.33M .
  7. ^ Seyfert, Carl K. (1943). "Emisión nuclear en nebulosas espirales". The Astrophysical Journal . 97 : 28. Bibcode :1943ApJ....97...28S. doi :10.1086/144488.
  8. ^ Bolton, JG; Stanley, GJ; Slee, OB (1949). "Posiciones de tres fuentes discretas de radiación de radiofrecuencia galáctica". Nature . 164 (4159): 101. Bibcode :1949Natur.164..101B. doi : 10.1038/164101b0 . S2CID  4073162.
  9. ^ Baade, Walter; Minkowski, Rudolph (1954). "Identificación de las fuentes de radio en Cassiopeia, Cygnus A y Puppis A". The Astrophysical Journal . 119 : 206. Bibcode :1954ApJ...119..206B. doi :10.1086/145812.
  10. ^ Israelian, Garik (1997). «Obituario: Victor Amazaspovich Ambartsumian, 1912 [es decir, 1908]–1996». Boletín de la Sociedad Astronómica Estadounidense . 29 (4): 1466–1467. Archivado desde el original el 11 de septiembre de 2015.
  11. ^ McCutcheon, Robert A. (1 de noviembre de 2019). «Ambartsumian, Viktor Amazaspovich». Diccionario completo de biografía científica . Encyclopedia.com . Archivado desde el original el 3 de diciembre de 2019.
  12. ^ Petrosian, Artashes R.; Harutyunian, Haik A.; Mickaelian, Areg M. (junio de 1997). "Victor Amazasp Ambartsumian". Physics Today . 50 (6): 106. doi : 10.1063/1.881754 .(PDF)
  13. ^ Komberg, BV (1992). "Cuásares y núcleos galácticos activos". En Kardashev, NS (ed.). Astrofísica en el umbral del siglo XXI . Taylor & Francis . pág. 253.
  14. ^ Schmidt, Maarten (1963). "3C 273: Un objeto similar a una estrella con un gran desplazamiento hacia el rojo". Nature . 197 (4872): 1040. Bibcode :1963Natur.197.1040S. doi : 10.1038/1971040a0 . S2CID  4186361.
  15. ^ Greenstein, JL; Matthews, TA (1963). "Desplazamiento al rojo de la fuente de radio inusual: 3C 48". Nature . 197 (4872): 1041. Bibcode :1963Natur.197.1041G. doi :10.1038/1971041a0. S2CID  4193798.
  16. ^ Shields, GA (1999). "Una breve historia de los núcleos galácticos activos". Publicaciones de la Sociedad Astronómica del Pacífico . 111 (760): 661. arXiv : astro-ph/9903401 . Código Bibliográfico :1999PASP..111..661S. doi :10.1086/316378. S2CID  18953602.
  17. ^ Lynden-Bell, Donald (1969). "Núcleos galácticos como viejos cuásares colapsados". Nature . 223 (5207): 690. Bibcode :1969Natur.223..690L. doi :10.1038/223690a0. S2CID  4164497.
  18. ^ Lynden-Bell, Donald (1969). "Núcleos galácticos como viejos cuásares colapsados". Nature . 223 (5207): 690–694. Código Bibliográfico :1969Natur.223..690L. doi :10.1038/223690a0. S2CID  4164497.
  19. ^ Marconi, A.; LK Hunt (2003). "La relación entre la masa del agujero negro, la masa del bulbo y la luminosidad en el infrarrojo cercano". The Astrophysical Journal . 589 (1): L21–L24. arXiv : astro-ph/0304274 . Código Bibliográfico :2003ApJ...589L..21M. doi :10.1086/375804. S2CID  15911138.
  20. ^ Narayan, R.; Yi, I. (1994). "Acreción dominada por advección: una solución autosimilar". Astrophys. J . 428 : L13. arXiv : astro-ph/9403052 . Código Bibliográfico :1994ApJ...428L..13N. doi :10.1086/187381. S2CID  8998323.
  21. ^ Fabian, AC; Rees, MJ (1995). "La luminosidad de acreción de un agujero negro masivo en una galaxia elíptica". Monthly Notices of the Royal Astronomical Society . 277 (2): L55–L58. arXiv : astro-ph/9509096 . Bibcode :1995MNRAS.277L..55F. doi : 10.1093/mnras/277.1.L55 . S2CID  18890265.
  22. ^ Padovani, P.; Alexander, DM; Assef, RJ; De Marco, B.; Giommi, P.; Hickox, RC; Richards, GT; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; Salvato, M. (noviembre de 2017). "Núcleos galácticos activos: ¿qué hay en un nombre?". The Astronomy and Astrophysics Review . 25 (1). arXiv : 1707.07134 . doi :10.1007/s00159-017-0102-9. ISSN  0935-4956.
  23. ^ Belfiore, Francesco (septiembre de 2016). «SDSS IV MaNGA – diagramas de diagnóstico resueltos espacialmente: una prueba de que muchas galaxias son LIER». Monthly Notices of the Royal Astronomical Society . 461 (3): 3111. arXiv : 1605.07189 . Bibcode :2016MNRAS.461.3111B. doi : 10.1093/mnras/stw1234 . S2CID  3353122.
  24. ^ Vermeulen, RC; Ogle, PM; Tran, HD; Browne, IWA; Cohen, MH; Readhead, ACS; Taylor, GB; Goodrich, RW (1995). "¿Cuándo BL Lac no es un BL Lac?". The Astrophysical Journal Letters . 452 (1): 5–8. Bibcode :1995ApJ...452L...5V. doi : 10.1086/309716 .
  25. ^ Hine, RG; Longair, MS (1979). "Espectros ópticos de radiogalaxias de 3 CR". Monthly Notices of the Royal Astronomical Society . 188 : 111–130. Bibcode :1979MNRAS.188..111H. doi : 10.1093/mnras/188.1.111 .
  26. ^ Laing, RA; Jenkins, CR; Wall, JV; Unger, SW (1994). "Espectrofotometría de una muestra completa de fuentes de radio 3CR: implicaciones para modelos unificados". Primer simposio de Stromlo: La física de las galaxias activas. Serie de conferencias de la ASP . 54 : 201. Código Bibliográfico : 1994ASPC...54..201L.
  27. ^ Baum, SA; Zirbel, EL; O'Dea, Christopher P. (1995). "Hacia la comprensión de la dicotomía Fanaroff-Riley en la morfología y potencia de las fuentes de radio". The Astrophysical Journal . 451 : 88. Bibcode :1995ApJ...451...88B. doi :10.1086/176202.
  28. ^ ab Chiaberge, M.; Capetti, A.; Celotti, A. (2002). "Entendiendo la naturaleza de los núcleos ópticos FRII: un nuevo plano de diagnóstico para las radiogalaxias". Astron. Astrophysics . 394 (3): 791–800. arXiv : astro-ph/0207654 . Bibcode :2002A&A...394..791C. doi :10.1051/0004-6361:20021204. S2CID  4308057.
  29. ^ ab Hardcastle, MJ; Evans, DA; Croston, JH (2006). "Los núcleos de rayos X de fuentes de radio de corrimiento al rojo intermedio". Monthly Notices of the Royal Astronomical Society . 370 (4): 1893–1904. arXiv : astro-ph/0603090 . Bibcode :2006MNRAS.370.1893H. doi : 10.1111/j.1365-2966.2006.10615.x . S2CID  14632376.
  30. ^ Grandi, SA; Osterbrock, DE (1978). "Espectros ópticos de radiogalaxias". Astrophysical Journal . 220 (Parte 1): 783. Bibcode :1978ApJ...220..783G. doi :10.1086/155966.
  31. ^ Antonucci, R. (1993). "Modelos unificados para núcleos galácticos activos y cuásares". Revista anual de astronomía y astrofísica . 31 (1): 473–521. Código Bibliográfico :1993ARA&A..31..473A. doi :10.1146/annurev.aa.31.090193.002353.
  32. ^ Urry, P.; Padovani, Paolo (1995). "Esquemas unificados para AGN radiofrecuenciales". Publicaciones de la Sociedad Astronómica del Pacífico . 107 : 803–845. arXiv : astro-ph/9506063 . Código Bibliográfico :1995PASP..107..803U. doi :10.1086/133630. S2CID  17198955.
  33. ^ Laing, RA (1988). "La lateralidad de los chorros y la despolarización en potentes fuentes de radio extragalácticas". Nature . 331 (6152): 149–151. Bibcode :1988Natur.331..149L. doi :10.1038/331149a0. S2CID  45906162.
  34. ^ Garrington, ST; Leahy, JP; Conway, RG; Laing, RA (1988). "Una asimetría sistemática en las propiedades de polarización de fuentes de radio dobles con un chorro". Nature . 331 (6152): 147–149. Bibcode :1988Natur.331..147G. doi :10.1038/331147a0. S2CID  4347023.
  35. ^ Barthel, PD (1989). "¿Todo cuásar recibe rayos?". Astrophysical Journal . 336 : 606–611. Bibcode :1989ApJ...336..606B. doi :10.1086/167038.
  36. ^ Belsole, E.; Worrall, DM; Hardcastle, MJ (2006). "Radiogalaxias de tipo II de Faranoff-Riley de alto corrimiento al rojo: propiedades de rayos X de los núcleos". Monthly Notices of the Royal Astronomical Society . 366 (1): 339–352. arXiv : astro-ph/0511606 . Bibcode :2006MNRAS.366..339B. doi : 10.1111/j.1365-2966.2005.09882.x . S2CID  9509179.
  37. ^ Ogle, P.; Whysong, D.; Antonucci, R. (2006). "Spitzer revela núcleos de cuásares ocultos en algunas poderosas radiogalaxias FR II". The Astrophysical Journal . 647 (1): 161–171. arXiv : astro-ph/0601485 . Código Bibliográfico :2006ApJ...647..161O. doi :10.1086/505337. S2CID  15122568.
  38. ^ Browne, IWA (1983). "¿Es posible convertir una radiogalaxia elíptica en un objeto BL Lac?". Monthly Notices of the Royal Astronomical Society . 204 : 23–27P. Bibcode :1983MNRAS.204P..23B. doi : 10.1093/mnras/204.1.23p .
  39. ^ Tran, HD (2001). "Galaxias ocultas de línea ancha Seyfert 2 en el CFA y muestras de 12 $\mu$M". The Astrophysical Journal . 554 (1): L19–L23. arXiv : astro-ph/0105462 . Código Bibliográfico :2001ApJ...554L..19T. doi :10.1086/320926. S2CID  2753150.
  40. ^ Wu, YZ; et al. (2001). "La naturaleza diferente en las galaxias Seyfert 2 con y sin regiones ocultas de líneas anchas". The Astrophysical Journal . 730 (2): 121–130. arXiv : 1101.4132 . Código Bibliográfico :2011ApJ...730..121W. doi :10.1088/0004-637X/730/2/121. S2CID  119209693.
  41. ^ Elitzur, M.; Shlosman I. (2006). "El toro que oscurece a los AGN: ¿el fin del paradigma de la rosquilla?". The Astrophysical Journal . 648 (2): L101–L104. arXiv : astro-ph/0605686 . Código Bibliográfico :2006ApJ...648L.101E. doi :10.1086/508158. S2CID  1972144.
  42. ^ Nicastro, F. (2000). "Regiones de líneas de emisión amplias en núcleos galácticos activos: el vínculo con el poder de acreción". The Astrophysical Journal . 530 (2): L101–L104. arXiv : astro-ph/9912524 . Código Bibliográfico :2000ApJ...530L..65N. doi :10.1086/312491. PMID  10655166. S2CID  23313718.
  43. ^ Ricci, C.; Walter, R.; Courvoisier, T. JL.; Paltani, S. (2010). "Reflexión en galaxias Seyfert y el modelo unificado de AGN". Astronomía y Astrofísica . 532 : A102–21. arXiv : 1101.4132 . Código Bibliográfico :2011A&A...532A.102R. doi :10.1051/0004-6361/201016409. S2CID  119309875.
  44. ^ Wang, JM; Du, P.; Baldwin, JA; Ge, JQ.; Ferland, GJ; Ferland, Gary J. (2012). "Formación estelar en discos autogravitantes en núcleos galácticos activos. II. Formación episódica de regiones de líneas anchas". The Astrophysical Journal . 746 (2): 137–165. arXiv : 1202.0062 . Código Bibliográfico :2012ApJ...746..137W. doi :10.1088/0004-637X/746/2/137. S2CID  5037595.
  45. ^ Laor, A. (2003). "Sobre la naturaleza de los núcleos galácticos activos de líneas estrechas y baja luminosidad". The Astrophysical Journal . 590 (1): 86–94. arXiv : astro-ph/0302541 . Código Bibliográfico :2003ApJ...590...86L. doi :10.1086/375008. S2CID  118648122.
  46. ^ Elitzur, M.; Ho, LC; Trump, JR (2014). "Evolución de la emisión de líneas anchas desde núcleos galácticos activos". Monthly Notices of the Royal Astronomical Society . 438 (4): 3340–3351. arXiv : 1312.4922 . Bibcode :2014MNRAS.438.3340E. doi : 10.1093/mnras/stt2445 . S2CID  52024863.
  47. ^ Elitzur, M. (2012). "Sobre la unificación de núcleos galácticos activos". Astrophysical Journal Letters . 747 (2): L33–L35. arXiv : 1202.1776 . Código Bibliográfico :2012ApJ...747L..33E. doi :10.1088/2041-8205/747/2/L33. S2CID  5037009.
  48. ^ Antonucci, R. (2012). "Una revisión pancromática de núcleos galácticos activos térmicos y no térmicos". Astronomical and Astrophysical Transactions . 27 (4): 557. arXiv : 1210.2716 . Código Bibliográfico :2012A&AT...27..557A.
  49. ^ Laurikainen, E.; Salo H. (1995). "Entornos de las galaxias Seyfert. II. Análisis estadísticos". Astronomía y Astrofísica . 293 : 683. Bibcode :1995A&A...293..683L.
  50. ^ Dultzin-Hacyan, D. ; Krongold, Y.; Fuentes-Guridi, I.; Marziani, P. (1999). "El entorno cercano de las galaxias Seyfert y su implicación para los modelos de unificación". Astrophysical Journal Letters . 513 (2): L111–L114. arXiv : astro-ph/9901227 . Código Bibliográfico :1999ApJ...513L.111D. doi :10.1086/311925. S2CID  15568552.
  51. ^ Koulouridis, E.; Plionis M.; Chavushyan V.; Dultzin-Hacyan D .; Krongold Y.; Goudis C. (2006). "Entorno local y a gran escala de las galaxias Seyfert". Revista Astrofísica . 639 (1): 37–45. arXiv : astro-ph/0509843 . Código Bib : 2006ApJ...639...37K. doi :10.1086/498421. S2CID  118938514.
  52. ^ Villarroel, B.; Korn, AJ (2014). "Los diferentes vecinos alrededor de los núcleos galácticos activos de tipo 1 y tipo 2". Nature Physics . 10 (6): 417–420. arXiv : 1211.0528 . Código Bibliográfico :2014NatPh..10..417V. doi :10.1038/nphys2951. S2CID  119199124.
  53. ^ Donoso, E.; Yan, L.; Stern, D.; Assef, RJ (2014). "El agrupamiento angular de AGN seleccionados por WISE: diferentes halos para AGN oscurecidos y no oscurecidos". The Astrophysical Journal . 789 (1): 44. arXiv : 1309.2277 . Código Bibliográfico :2014ApJ...789...44D. doi :10.1088/0004-637X/789/1/44. S2CID  118512526.
  54. ^ Krongold, Y.; Dultzin-Hacyan, D .; Marziani, D. (2002). "El entorno circungaláctico de las galaxias brillantes IRAS". Revista Astrofísica . 572 (1): 169-177. arXiv : astro-ph/0202412 . Código Bib : 2002ApJ...572..169K. doi :10.1086/340299. S2CID  17282005.
  55. ^ Villarroel, B.; Nyholm, A.; Karlsson, T.; Comeron, S.; Korn, A.; Sollerman, J.; Zackrisson, E. (2017). "Luminosidad de AGN y edad estelar: dos ingredientes faltantes para la unificación de AGN como se ve con supernovas iPTF". The Astrophysical Journal . 837 (2): 110. arXiv : 1701.08647 . Bibcode :2017ApJ...837..110V. doi : 10.3847/1538-4357/aa5d5a . S2CID  67809219.
  56. ^ Ananna, Tonima Tasnim; Weigel, Anna K.; Trakhtenbrot, Benny; Koss, Michael J.; Urry, C. Megan; Ricci, Claudio; Hickox, Ryan C.; Treister, Ezequiel; Bauer, Franz E.; Ueda, Yoshihiro; Mushotzky, Richard; Ricci, Federica; Oh, Kyuseok; Mejía-Restrepo, Julian E.; Brok, Jakob Den; Stern, Daniel; Powell, Meredith C.; Caglar, Turgay; Ichikawa, Kohei; Wong, O. Ivy; Harrison, Fiona A.; Schawinski, Kevin (1 de julio de 2022). "BASS. XXX. Funciones de distribución de los coeficientes de Eddington de DR2, las masas de los agujeros negros y las luminosidades de rayos X". Serie de suplementos de la revista Astrophysical Journal . 261 (1). Sociedad Astronómica Americana: 9. arXiv : 2201.05603 . Código Bibliográfico :2022ApJS..261....9A. doi : 10.3847/1538-4365/ac5b64 . ISSN  0067-0049. S2CID  245986416.
  57. ^ Ricci, Claudio; Trakhtenbrot, Benny; Koss, Michael J.; Ueda, Yoshihiro; Schawinski, Kevin; Oh, Kyuseok; Lamperti, Isabella; Mushotzky, Richard; Treister, Ezequiel; Ho, Luis C.; Weigel, Anna; Bauer, Franz E.; Paltani, Stephane; Fabian, Andrew C.; Xie, Yanxia; Gehrels, Neil (2017). "Los entornos cercanos de los agujeros negros masivos en acreción están moldeados por la retroalimentación radiativa". Nature . 549 (7673). Springer Science and Business Media LLC: 488–491. arXiv : 1709.09651 . Código Bibliográfico :2017Natur.549..488R. doi :10.1038/nature23906. Número de serie  : 28959966.  S2CID :  205260182.

Enlaces externos