stringtranslate.com

Mutagénesis dirigida al sitio

La mutagénesis dirigida al sitio es un método de biología molecular que se utiliza para realizar cambios mutacionales específicos e intencionales en la secuencia de ADN de un gen y cualquier producto génico . También llamada mutagénesis de sitio específico o mutagénesis dirigida a oligonucleótidos , se utiliza para investigar la estructura y la actividad biológica del ADN , el ARN y las moléculas de proteínas , y para la ingeniería de proteínas .

La mutagénesis dirigida al sitio es una de las técnicas de laboratorio más importantes para crear bibliotecas de ADN mediante la introducción de mutaciones en secuencias de ADN. Existen numerosos métodos para lograr la mutagénesis dirigida al sitio, pero con los costos cada vez menores de la síntesis de oligonucleótidos , la síntesis de genes artificiales ahora se utiliza ocasionalmente como una alternativa a la mutagénesis dirigida al sitio. Desde 2013, el desarrollo de la tecnología CRISPR /Cas9, basada en un sistema de defensa viral procariótico, también ha permitido la edición del genoma , y ​​la mutagénesis puede realizarse in vivo con relativa facilidad. [1]

Historia

Los primeros intentos de mutagénesis utilizando radiación o mutágenos químicos no fueron específicos de un sitio y generaron mutaciones aleatorias. [2] Posteriormente se utilizaron análogos de nucleótidos y otras sustancias químicas para generar mutaciones puntuales localizadas , [3] ejemplos de tales sustancias químicas son aminopurina , [4] nitrosoguanidina , [5] y bisulfito . [6] La mutagénesis dirigida se logró en 1974 en el laboratorio de Charles Weissmann utilizando un análogo de nucleótido N 4 -hidroxicitidina, que induce la transición de GC a AT. [7] [8] Estos métodos de mutagénesis, sin embargo, están limitados por el tipo de mutación que pueden lograr y no son tan específicos como los métodos posteriores de mutagénesis dirigida.

En 1971, Clyde Hutchison y Marshall Edgell demostraron que es posible producir mutantes con pequeños fragmentos del fago ϕX174 y nucleasas de restricción . [9] [10] Hutchison posteriormente produjo con su colaborador Michael Smith en 1978 un enfoque más flexible para la mutagénesis dirigida al sitio mediante el uso de oligonucleótidos en un método de extensión de cebadores con ADN polimerasa. [11] Por su participación en el desarrollo de este proceso, Michael Smith compartió posteriormente el Premio Nobel de Química en octubre de 1993 con Kary B. Mullis , quien inventó la reacción en cadena de la polimerasa .

Mecanismo básico

El procedimiento básico requiere la síntesis de un cebador de ADN corto. Este cebador sintético contiene la mutación deseada y es complementario al ADN molde alrededor del sitio de la mutación para que pueda hibridarse con el ADN del gen de interés. La mutación puede ser un cambio de base única (una mutación puntual ), cambios de bases múltiples, eliminación o inserción . Luego, el cebador monocatenario se extiende utilizando una ADN polimerasa , que copia el resto del gen. El gen así copiado contiene el sitio mutado y luego se introduce en una célula huésped en un vector y se clona . Finalmente, los mutantes se seleccionan mediante secuenciación de ADN para comprobar que contienen la mutación deseada.

Enfoques

El método original que utilizaba la extensión con un solo cebador era ineficiente debido al bajo rendimiento de mutantes. Esta mezcla resultante contiene tanto la plantilla original no mutada como la cadena mutante, lo que produce una población mixta de progenies mutantes y no mutantes. Además, el molde utilizado está metilado mientras que la cadena mutante no está metilada, y los mutantes pueden contraseleccionarse debido a la presencia de un sistema de reparación de errores de coincidencia que favorece el ADN molde metilado, lo que da como resultado menos mutantes. Desde entonces se han desarrollado muchos enfoques para mejorar la eficiencia de la mutagénesis.

Hay una gran cantidad de métodos disponibles para efectuar la mutagénesis dirigida a un sitio, [12] aunque la mayoría de ellos rara vez se han utilizado en laboratorios desde principios de la década de 2000, ya que las técnicas más nuevas permiten formas más simples y fáciles de introducir mutaciones específicas de un sitio en los genes.

El método de Kunkel.

En 1985, Thomas Kunkel introdujo una técnica que reduce la necesidad de seleccionar mutantes. [13] El fragmento de ADN que se va a mutar se inserta en un fagémido como M13mp18/19 y luego se transforma en una cepa de E. coli deficiente en dos enzimas, dUTPasa ( dut ) y uracilo deglicosidasa ( udg ). Ambas enzimas son parte de una vía de reparación del ADN que protege el cromosoma bacteriano de mutaciones mediante la desaminación espontánea de dCTP a dUTP. La deficiencia de dUTPasa previene la descomposición de dUTP, lo que resulta en un alto nivel de dUTP en la célula. La deficiencia de uracilo deglicosidasa impide la eliminación de uracilo del ADN recién sintetizado. A medida que E. coli doblemente mutante replica el ADN del fago, su maquinaria enzimática puede, por lo tanto, incorporar erróneamente dUTP en lugar de dTTP, lo que da como resultado un ADN monocatenario que contiene algunos uracilos (ssUDNA). El ssUDNA se extrae del bacteriófago que se libera en el medio y luego se utiliza como plantilla para la mutagénesis. Se utiliza un oligonucleótido que contiene la mutación deseada para la extensión del cebador. El ADN heterodúplex que se forma consta de una cadena parental no mutada que contiene dUTP y una cadena mutada que contiene dTTP. Luego, el ADN se transforma en una cepa de E. coli que porta los genes dut y udg de tipo salvaje . Aquí, la cadena de ADN parental que contiene uracilo se degrada, de modo que casi todo el ADN resultante consiste en la cadena mutada.

Mutagénesis en casete

A diferencia de otros métodos, la mutagénesis en casete no necesita implicar la extensión del cebador utilizando ADN polimerasa. En este método, se sintetiza un fragmento de ADN y luego se inserta en un plásmido. [14] Implica la escisión mediante una enzima de restricción en un sitio del plásmido y la posterior ligadura de un par de oligonucleótidos complementarios que contienen la mutación en el gen de interés para el plásmido. Por lo general, las enzimas de restricción que cortan el plásmido y el oligonucleótido son las mismas, lo que permite que los extremos pegajosos del plásmido y el inserto se unan entre sí. Este método puede generar mutantes con una eficacia cercana al 100%, pero está limitado por la disponibilidad de sitios de restricción adecuados que flanquean el sitio que se va a mutar.

Mutagénesis dirigida al sitio por PCR

Representación de una forma común de clonar una biblioteca de mutagénesis dirigida (es decir, utilizando oligos degenerados). El gen de interés se realiza por PCR con oligos que contienen una región que es perfectamente complementaria a la plantilla (azul) y una que difiere de la plantilla en uno o más nucleótidos (rojo). Muchos de estos cebadores que contienen degeneración en la región no complementaria se combinan en la misma PCR, lo que da como resultado muchos productos de PCR diferentes con diferentes mutaciones en esa región (los mutantes individuales se muestran con diferentes colores a continuación).

La limitación de los sitios de restricción en la mutagénesis en casete se puede superar usando la reacción en cadena de la polimerasa con " cebadores " oligonucleotídicos , de modo que se pueda generar un fragmento más grande que cubra dos sitios de restricción convenientes. La amplificación exponencial en PCR produce un fragmento que contiene la mutación deseada en cantidad suficiente para separarse del plásmido original no mutado mediante electroforesis en gel , que luego puede insertarse en el contexto original utilizando técnicas estándar de biología molecular recombinante. Hay muchas variaciones de la misma técnica. El método más sencillo sitúa el sitio de mutación hacia uno de los extremos del fragmento, por lo que uno de los dos oligonucleótidos utilizados para generar el fragmento contiene la mutación. Esto implica un solo paso de PCR, pero todavía tiene el problema inherente de requerir un sitio de restricción adecuado cerca del sitio de mutación, a menos que se utilice un cebador muy largo. Por lo tanto, otras variaciones emplean tres o cuatro oligonucleótidos, dos de los cuales pueden ser oligonucleótidos no mutagénicos que cubren dos sitios de restricción convenientes y generan un fragmento que se puede digerir y ligar en un plásmido, mientras que el oligonucleótido mutagénico puede ser complementario a una ubicación. dentro de ese fragmento, lejos de cualquier sitio de restricción conveniente. Estos métodos requieren múltiples pasos de PCR para que el fragmento final que se va a ligar pueda contener la mutación deseada. El proceso de diseño para generar un fragmento con la mutación deseada y los sitios de restricción relevantes puede resultar engorroso. Herramientas de software como SDM-Assist [15] pueden simplificar el proceso.

Mutagénesis de plásmido completo

Para las manipulaciones de plásmidos, otras técnicas de mutagénesis dirigida han sido reemplazadas en gran medida por técnicas que son altamente eficientes pero relativamente simples, fáciles de usar y disponibles comercialmente como un kit. Un ejemplo de estas técnicas es el método "Quikchange", [16] en el que se utilizan un par de cebadores mutagénicos complementarios para amplificar el plásmido completo en una reacción de termociclado utilizando una ADN polimerasa de alta fidelidad que no desplaza cadenas, como la polimerasa Pfu . La reacción genera un ADN circular mellado . El ADN molde debe eliminarse mediante digestión enzimática con una enzima de restricción como Dpn I, que es específica para el ADN metilado. Todo el ADN producido a partir de la mayoría de las cepas de Escherichia coli estaría metilado; Por lo tanto , el plásmido plantilla que se biosintetiza en E. coli será digerido, mientras que el plásmido mutado, que se genera in vitro y, por lo tanto, no está metilado, quedará sin digerir. Tenga en cuenta que, en estos métodos de mutagénesis de plásmidos de doble hebra, si bien se puede utilizar la reacción de termociclado, el ADN no se amplifica exponencialmente si los dos cebadores están diseñados de manera que se unan simétricamente a la misma región alrededor del sitio de mutagénesis, como se describe en la protocolo original. En este caso la amplificación es lineal, por lo que es inexacto describir el procedimiento como una PCR, ya que no hay reacción en cadena. Sin embargo, si los cebadores se diseñan para unirse de manera desplazada de manera que el sitio de mutagénesis esté cerca del extremo 5' de ambos cebadores, la región 3' de los cebadores puede unirse también a los productos amplificados y, por lo tanto, se observa una formación exponencial de productos. El nombre "Quikchange" proviene de la marca registrada "QuikChange mutagenesis" de Stratagene , ahora Agilent Technologies , para kits de mutagénesis dirigida al sitio. El método fue desarrollado por científicos que trabajan en Stratagene. [dieciséis]

Tenga en cuenta que la polimerasa Pfu puede desplazar las hebras a una temperatura de extensión más alta (≥70 °C), lo que puede provocar el fracaso del experimento; por lo tanto, la reacción de extensión debe realizarse a la temperatura recomendada de 68 °C. En algunas aplicaciones, se ha observado que este método conduce a la inserción de múltiples copias de cebadores. [17] Una variación de este método, llamada SPRINP, previene este artefacto y se ha utilizado en diferentes tipos de mutagénesis dirigida al sitio. [17]

Otras técnicas, como la mutagénesis de barrido de dianas oligodirigidas (SMOOT), pueden combinar de forma semialeatoria oligonucleótidos mutagénicos en la mutagénesis de plásmidos. [18] Esta técnica puede crear bibliotecas de mutagénesis de plásmidos que van desde mutaciones únicas hasta mutagénesis de codones completa en un gen completo.

Métodos de mutagénesis dirigida al sitio in vivo.

CRISPR

Desde 2013, el desarrollo de la tecnología CRISPR -Cas9 ha permitido la introducción eficiente de diversas mutaciones en el genoma de una amplia variedad de organismos. El método no requiere un sitio de inserción de transposón, no deja marcador y su eficiencia y simplicidad lo han convertido en el método preferido para la edición del genoma . [21] [22]

Aplicaciones

La mutagénesis de saturación de sitio es un tipo de mutagénesis dirigida a un sitio. Esta imagen muestra la mutagénesis de saturación de una sola posición en una proteína teórica de 10 residuos. La versión natural de la proteína se muestra en la parte superior, donde M representa el primer aminoácido metionina y * representa la terminación de la traducción. A continuación se muestran los 19 mutantes de la isoleucina en la posición 5.

La mutagénesis dirigida al sitio se utiliza para generar mutaciones que pueden producir una proteína diseñada racionalmente que tiene propiedades mejoradas o especiales (es decir, ingeniería de proteínas).

Herramientas de investigación : las mutaciones específicas en el ADN permiten investigar la función y las propiedades de una secuencia de ADN o de una proteína de forma racional. Además, los cambios de un solo aminoácido mediante mutagénesis dirigida al sitio en proteínas pueden ayudar a comprender la importancia de las modificaciones postraduccionales. Por ejemplo, cambiar una serina particular (fosfoaceptor) por una alanina (fosfonoaceptor) en una proteína sustrato bloquea la unión de un grupo fosfato, lo que permite investigar la fosforilación. Este enfoque se ha utilizado para descubrir la fosforilación de la proteína CBP por la quinasa HIPK2 [23]. Otro enfoque integral es la mutagénesis de saturación de sitio , donde un codón o un conjunto de codones pueden sustituirse con todos los aminoácidos posibles en posiciones específicas. [24]

Aplicaciones comerciales : las proteínas se pueden diseñar para producir formas mutantes que se adapten a una aplicación específica. Por ejemplo, los detergentes para ropa de uso común pueden contener subtilisina , cuya forma natural tiene una metionina que puede oxidarse con lejía, lo que reduce significativamente la actividad de la proteína en el proceso. [25] Esta metionina puede ser reemplazada por alanina u otros residuos, haciéndola resistente a la oxidación y manteniendo así la proteína activa en presencia de lejía. [26]

Síntesis de genes

A medida que disminuye el costo de la síntesis de oligonucleótidos de ADN, la síntesis artificial de un gen completo es ahora un método viable para introducir mutaciones en un gen. Este método permite una mutagénesis extensa en múltiples sitios, incluido el rediseño completo del uso de codones del gen para optimizarlo para un organismo en particular. [27]

Ver también

Referencias

  1. ^ Hsu PD, Lander ES, Zhang F (junio de 2014). "Desarrollo y aplicaciones de CRISPR-Cas9 para ingeniería genómica". Celúla . 157 (6): 1262–78. doi :10.1016/j.cell.2014.05.010. PMC  4343198 . PMID  24906146.
  2. ^ Kilbey, BJ (1995). "Charlotte Auerbach (1899-1994)". Genética . 141 (1): 1–5. doi :10.1093/genética/141.1.1. PMC 1206709 . PMID  8536959. 
  3. ^ Shortle, D.; Dimaio, D.; Nathans, D. (1981). "Mutagénesis dirigida". Revista Anual de Genética . 15 : 265–294. doi : 10.1146/annurev.ge.15.120181.001405. PMID  6279018.
  4. ^ Caras, IW; MacInnes, MA; Persing, DH; Coffino, P.; Martín Jr, DW (1982). "Mecanismo de mutagénesis de 2-aminopurina en células de linfosarcoma T de ratón". Biología Molecular y Celular . 2 (9): 1096–1103. doi :10.1128/MCB.2.9.1096. PMC 369902 . PMID  6983647. 
  5. ^ McHugh, GL; Molinero, CG (1974). "Aislamiento y caracterización de mutantes de prolina peptidasa de Salmonella typhimurium". Revista de Bacteriología . 120 (1): 364–371. doi :10.1128/JB.120.1.364-371.1974. PMC 245771 . PMID  4607625. 
  6. ^ D Shortle y D Nathans (1978). "Mutagénesis local: un método para generar mutantes virales con sustituciones de bases en regiones preseleccionadas del genoma viral". Procedimientos de la Academia Nacional de Ciencias . 75 (5): 2170–2174. Código bibliográfico : 1978PNAS...75.2170S. doi : 10.1073/pnas.75.5.2170 . PMC 392513 . PMID  209457. 
  7. ^ RA Flavell; DL Sabo; EF Bandle y C Weissmann (1975). "Mutagénesis dirigida al sitio: efecto de una mutación extracistrónica en la propagación in vitro del ARN del bacteriófago Qbeta". Proc Natl Acad Sci Estados Unidos . 72 (1): 367–371. Código bibliográfico : 1975PNAS...72..367F. doi : 10.1073/pnas.72.1.367 . PMC 432306 . PMID  47176. 
  8. ^ Willi Muller; Hans Weber; François Meyer; Charles Weissmann (1978). "Mutagénesis dirigida al sitio en el ADN: generación de mutaciones puntuales en el ADN complementario de la β globina clonada en las posiciones correspondientes a los aminoácidos 121 a 123". Revista de biología molecular . 124 (2): 343–358. doi :10.1016/0022-2836(78)90303-0. PMID  712841.
  9. ^ Hutchison III, California; Edgell, MH (1971). "Ensayo genético para pequeños fragmentos del ácido desoxirribonucleico del bacteriófago φX174". Revista de Virología . 8 (2): 181–189. doi :10.1128/JVI.8.2.181-189.1971. PMC 356229 . PMID  4940243. 
  10. ^ Marshall H. Edgell, Clyde A. Hutchison, III y Morton Sclair (1972). "Fragmentos específicos de endonucleasa R del ácido desoxirribonucleico del bacteriófago X174". Revista de Virología . 9 (4): 574–582. doi :10.1128/JVI.9.4.574-582.1972. PMC 356341 . PMID  4553678. {{cite journal}}: Mantenimiento CS1: varios nombres: lista de autores ( enlace )
  11. ^ Hutchison CA, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (septiembre de 1978). "Mutagénesis en una posición específica en una secuencia de ADN" (PDF) . J. Biol. química . 253 (18): 6551–60. doi : 10.1016/S0021-9258(19)46967-6 . PMID  681366.
  12. ^ Braman, Jeff, ed. (2002). Protocolos de mutagénesis in vitro . Métodos en biología molecular. vol. 182 (2ª ed.). Prensa Humana. ISBN 978-0896039100.
  13. ^ Kunkel TA. (1985). "Mutagénesis específica de sitio rápida y eficiente sin selección fenotípica". Procedimientos de la Academia Nacional de Ciencias . 82 (2): 488–92. Código bibliográfico : 1985PNAS...82..488K. doi : 10.1073/pnas.82.2.488 . PMC 397064 . PMID  3881765. 
  14. ^ Wells, JA; Estell, DA (1988). "Subtilisina: una enzima diseñada para ser modificada por ingeniería genética". Tendencias en Ciencias Bioquímicas . 13 (8): 291–297. doi :10.1016/0968-0004(88)90121-1. PMID  3154281.
  15. ^ Karnik, Abhijit; Karnik, Rucha; Grefen, Christopher (2013). "Software SDM-Assist para diseñar cebadores de mutagénesis dirigida al sitio que introducen sitios de restricción" silenciosos ". Bioinformática BMC . 14 (1): 105. doi : 10.1186/1471-2105-14-105 . ISSN  1471-2105. PMC 3644487 . PMID  23522286. 
  16. ^ ab Papworth, C., Bauer, JC, Braman, J. y Wright, DA (1996). "Mutagénesis dirigida al sitio en un día con> 80% de eficiencia". Estrategias . 9 (3): 3–4.{{cite journal}}: Mantenimiento CS1: varios nombres: lista de autores ( enlace )
  17. ^ ab Edelheit, O; Hanukoglu, A; Hanukoglu, yo (2009). "Mutagénesis dirigida al sitio simple y eficiente que utiliza dos reacciones de un solo cebador en paralelo para generar mutantes para estudios de estructura y función de proteínas". BMC Biotecnología . 9 : 61. doi : 10.1186/1472-6750-9-61 . PMC 2711942 . PMID  19566935. 
  18. ^ Cerchione, Derek; Suerte con el amor, Katherine; Tillotson, Eric L.; Harbinski, Fred; DaSilva, Jen; Kelley, Chase P.; Keston-Smith, Elise; Fernández, Cecilia A.; Myer, Vic E.; Jayaram, Hariharan; Steinberg, Barrett E. (16 de abril de 2020). "Bibliotecas SMOOT y evolución dirigida de Cas9 inducida por fagos para diseñar una actividad fuera del objetivo reducida". MÁS UNO . 15 (4): e0231716. Código Bib : 2020PLoSO..1531716C. doi : 10.1371/journal.pone.0231716 . ISSN  1932-6203. PMC 7161989 . PMID  32298334. 
  19. ^ Historia F.; Resnick MA. (2006). "El enfoque delitto perfetto para la mutagénesis dirigida al sitio in vivo y los reordenamientos cromosómicos con oligonucleótidos sintéticos en levadura ". Métodos en enzimología. vol. 409, págs. 329–45. doi :10.1016/S0076-6879(05)09019-1. ISBN 9780121828141. PMID  16793410.
  20. ^ Historia F.; Resnick MA (2003). "Delitto perfetto mutagénesis dirigida en levadura con oligonucleótidos". Ingeniería genética . 25 : 189–207. PMID  15260239.
  21. ^ Damien Biot-Pelletier; Vicente J. J. Martín (2016). "Mutagénesis fluida dirigida al sitio del genoma de Saccharomyces cerevisiae utilizando CRISPR-Cas9". Revista de Ingeniería Biológica . 10 : 6. doi : 10.1186/s13036-016-0028-1 . PMC 4850645 . PMID  27134651. 
  22. ^ Xu S (20 de agosto de 2015). "La aplicación de la edición del genoma CRISPR-Cas9 en Caenorhabditis elegans". J Genet Genómica . 42 (8): 413–21. doi :10.1016/j.jgg.2015.06.005. PMC 4560834 . PMID  26336798. 
  23. ^ Kovács KA, Steinmann M, Halfon O, Magistretti PJ, Cardinaux JR (noviembre de 2015). "Regulación compleja de la proteína de unión a CREB por la proteína quinasa 2 que interactúa con el homeodominio" (PDF) . Señalización Celular . 27 (11): 2252–60. doi :10.1016/j.cellsig.2015.08.001. PMID  26247811.
  24. ^ Reetz, MT; Carballeira JD (2007). "Mutagénesis de saturación iterativa (ISM) para una rápida evolución dirigida de enzimas funcionales". Protocolos de la Naturaleza . 2 (4): 891–903. doi :10.1038/nprot.2007.72. PMID  17446890. S2CID  37361631.
  25. ^ Stauffer CE, Etson D (10 de octubre de 1969). "El efecto sobre la actividad de la subtilisina de la oxidación de un residuo de metionina". Revista de Química Biológica . 244 (19): 5333–8. doi : 10.1016/S0021-9258(18)63664-6 . PMID  5344139.
  26. ^ Estell DA, Graycar TP, Wells JA (10 de junio de 1985). "Diseñar una enzima mediante mutagénesis dirigida al sitio para que sea resistente a la oxidación química". Revista de Química Biológica . 260 (11): 6518–21. doi : 10.1016/S0021-9258(18)88811-1 . PMID  3922976.
  27. ^ Yury E. Khudyakov, Howard A. Fields, ed. (25 de septiembre de 2002). ADN artificial: métodos y aplicaciones. Prensa CRC. pag. 13.ISBN 9781420040166.

enlaces externos