stringtranslate.com

Proceso Lévy

En teoría de la probabilidad , un proceso de Lévy , llamado así por el matemático francés Paul Lévy , es un proceso estocástico con incrementos estacionarios e independientes: representa el movimiento de un punto cuyos desplazamientos sucesivos son aleatorios , en el que los desplazamientos en intervalos de tiempo disjuntos por pares son independientes y los desplazamientos en intervalos de tiempo diferentes de la misma longitud tienen distribuciones de probabilidad idénticas. Por lo tanto, un proceso de Lévy puede considerarse como el análogo en tiempo continuo de un paseo aleatorio .

Los ejemplos más conocidos de procesos de Lévy son el proceso de Wiener , a menudo llamado proceso de movimiento browniano , y el proceso de Poisson . Otros ejemplos importantes son el proceso Gamma , el proceso de Pascal y el proceso de Meixner. Aparte del movimiento browniano con deriva, todos los demás procesos de Lévy propios (es decir, no deterministas) tienen trayectorias discontinuas . Todos los procesos de Lévy son procesos aditivos . [1]

Definición matemática

Un proceso de Lévy es un proceso estocástico que satisface las siguientes propiedades:

  1. casi seguro ;
  2. Independencia de incrementos : Para cualquier,son mutuamente independientes ;
  3. Incrementos estacionarios : Para cualquier,es igual en distribución a
  4. Continuidad en probabilidad : Para cualquieryse cumple que

Si es un proceso de Lévy, entonces se puede construir una versión del mismo que sea casi seguramente continua por la derecha con límites por la izquierda .

Propiedades

Incrementos independientes

Un proceso estocástico de tiempo continuo asigna una variable aleatoria X t a cada punto t ≥ 0 en el tiempo. En efecto, es una función aleatoria de t . Los incrementos de un proceso de este tipo son las diferencias X sX t entre sus valores en diferentes momentos t < s . Decir que los incrementos de un proceso son independientes significa que los incrementos X sX t y X uX v son variables aleatorias independientes siempre que los dos intervalos de tiempo no se superpongan y, de forma más general, cualquier número finito de incrementos asignados a intervalos de tiempo no superpuestos por pares son mutuamente independientes (no solo por pares ).

Incrementos estacionarios

Decir que los incrementos son estacionarios significa que la distribución de probabilidad de cualquier incremento X tX s depende sólo de la longitud t  −  s del intervalo de tiempo; los incrementos en intervalos de tiempo igualmente largos se distribuyen de manera idéntica.

Si es un proceso de Wiener , la distribución de probabilidad de X t  −  X s es normal con valor esperado 0 y varianza t  −  s .

Si es un proceso de Poisson , la distribución de probabilidad de X t  −  X s es una distribución de Poisson con valor esperado λ( t  −  s ), donde λ > 0 es la "intensidad" o "tasa" del proceso.

Si es un proceso de Cauchy , la distribución de probabilidad de X t  −  X s es una distribución de Cauchy con densidad .

Divisibilidad infinita

La distribución de un proceso de Lévy tiene la propiedad de divisibilidad infinita : dado cualquier entero n , la ley de un proceso de Lévy en el tiempo t se puede representar como la ley de la suma de n variables aleatorias independientes, que son precisamente los incrementos del proceso de Lévy en intervalos de tiempo de longitud t / n, que son independientes e idénticamente distribuidos por los supuestos 2 y 3. A la inversa, para cada distribución de probabilidad infinitamente divisible , existe un proceso de Lévy tal que la ley de está dada por .

Momentos

En cualquier proceso de Lévy con momentos finitos , el momento n es una función polinomial de t ; estas funciones satisfacen una identidad binomial :

Representación de Lévy-Khintchine

La distribución de un proceso de Lévy se caracteriza por su función característica , que viene dada por la fórmula de Lévy-Khintchine (general para todas las distribuciones infinitamente divisibles ): [2]

Si es un proceso de Lévy, entonces su función característica está dada por

donde , , y es una medida σ -finita llamada medida de Lévy de , que satisface la propiedad

En lo anterior, es la función indicadora . Debido a que las funciones características determinan de manera única sus distribuciones de probabilidad subyacentes, cada proceso de Lévy está determinado de manera única por el "triplete de Lévy–Khintchine" . Los términos de este triplete sugieren que un proceso de Lévy puede verse como si tuviera tres componentes independientes: una deriva lineal, un movimiento browniano y un proceso de salto de Lévy, como se describe a continuación. Esto da inmediatamente como resultado que el único proceso de Lévy continuo (no determinista) es un movimiento browniano con deriva; de manera similar, cada proceso de Lévy es una semimartingala . [3]

Descomposición de Lévy-Itô

Como las funciones características de las variables aleatorias independientes se multiplican, el teorema de Lévy-Khintchine sugiere que cada proceso de Lévy es la suma del movimiento browniano con deriva y otra variable aleatoria independiente, un proceso de salto de Lévy. La descomposición de Lévy-Itô describe este último como una suma (estocástica) de variables aleatorias independientes de Poisson.

Sea — es decir, la restricción de a , normalizada para ser una medida de probabilidad; de manera similar, sea (pero no cambie la escala). Entonces

La primera es la función característica de un proceso de Poisson compuesto con intensidad y distribución de hijos . La segunda es la de un proceso de Poisson generalizado compensado (CGPP): un proceso con un número contable de discontinuidades de salto en cada intervalo como , pero tales que esas discontinuidades son de magnitud menor que . Si , entonces el CGPP es un proceso de salto puro . [4] [5] Por lo tanto, en términos de procesos, se puede descomponer de la siguiente manera

donde es el proceso de Poisson compuesto con saltos mayores que en valor absoluto y es el proceso de Poisson generalizado compensado antes mencionado que también es una martingala de media cero.

Generalización

Un campo aleatorio de Lévy es una generalización multidimensional del proceso de Lévy. [6] [7] Aún más generales son los procesos descomponibles. [8]

Véase también

Referencias

  1. ^ Sato, Ken-Iti (1999). Procesos de Lévy y distribuciones infinitamente divisibles . Cambridge University Press. pp. 31–68. ISBN 9780521553025.
  2. ^ Zolotarev, Vladimir M. Distribuciones estables unidimensionales. Vol. 65. American Mathematical Soc., 1986.
  3. ^ Protter PE Integración estocástica y ecuaciones diferenciales. Springer, 2005.
  4. ^ Kyprianou, Andreas E. (2014), "La descomposición de Lévy-Itô y la estructura de trayectorias", Fluctuaciones de los procesos de Lévy con aplicaciones , Universitext, Springer Berlin Heidelberg, págs. 35-69, doi :10.1007/978-3-642-37632-0_2, ISBN 9783642376313
  5. ^ Lawler, Gregory (2014). «Cálculo estocástico: una introducción con aplicaciones» (PDF) . Departamento de Matemáticas (Universidad de Chicago) . Archivado desde el original (PDF) el 29 de marzo de 2018. Consultado el 3 de octubre de 2018 .
  6. ^ Wolpert, Robert L.; Ickstadt, Katja (1998), "Simulación de campos aleatorios de Lévy", Practical Nonparametric and Semiparametric Bayesian Statistics , Notas de clase en estadística, Springer, Nueva York, doi : 10.1007/978-1-4612-1732-9_12, ISBN 978-1-4612-1732-9
  7. ^ Wolpert, Robert L. (2016). "Campos aleatorios de Lévy" (PDF) . Departamento de Ciencias Estadísticas (Universidad de Duke) .
  8. ^ Feldman, Jacob (1971). "Procesos descomponibles y productos continuos de espacios de probabilidad". Revista de análisis funcional . 8 (1): 1–51. doi :10.1016/0022-1236(71)90017-6. ISSN  0022-1236.