stringtranslate.com

Límite de grano

Micrografía de un metal policristalino ; límites de grano evidenciados por grabado ácido.
Cristalitos de diferente orientación en un material policristalino.

En ciencia de materiales , un límite de grano es la interfaz entre dos granos, o cristalitos , en un material policristalino. Los límites de grano son defectos bidimensionales en la estructura cristalina y tienden a disminuir la conductividad eléctrica y térmica del material. La mayoría de los límites de grano son sitios preferidos para el inicio de la corrosión [1] y para la precipitación de nuevas fases del sólido. También son importantes para muchos de los mecanismos de fluencia . [2] Por otro lado, los límites de grano interrumpen el movimiento de las dislocaciones a través de un material, por lo que reducir el tamaño de los cristalitos es una forma común de mejorar la resistencia mecánica, como se describe en la relación Hall-Petch .

Límites de ángulo alto y bajo

Es conveniente clasificar los límites de los granos según el grado de desorientación entre los dos granos. Los límites de grano de ángulo bajo ( LAGB ) o límites de subgrano son aquellos con una desorientación inferior a unos 15 grados. [3] En términos generales, se componen de una serie de dislocaciones y sus propiedades y estructura son función de la desorientación. Por el contrario, las propiedades de los límites de grano de ángulo alto , cuya desorientación es mayor que aproximadamente 15 grados (el ángulo de transición varía de 10 a 15 grados dependiendo del material), normalmente son independientes de la desorientación. Sin embargo, existen "límites especiales" en orientaciones particulares cuyas energías interfaciales son notablemente más bajas que las de los límites generales de grano de alto ángulo.

Representaciones esquemáticas de un límite de inclinación (arriba) y un límite de torsión entre dos granos idealizados.

El límite más simple es el de un límite de inclinación donde el eje de rotación es paralelo al plano límite. Se puede concebir que este límite se forma a partir de un único cristalito o grano contiguo que se dobla gradualmente por alguna fuerza externa. La energía asociada con la flexión elástica de la red se puede reducir insertando una dislocación, que es esencialmente un semiplano de átomos que actúa como una cuña, que crea una desorientación permanente entre los dos lados. A medida que el grano se dobla más, se deben introducir más y más dislocaciones para acomodar la deformación, lo que da como resultado un muro creciente de dislocaciones: un límite de ángulo bajo. Ahora se puede considerar que el grano se ha dividido en dos subgranos de cristalografía relacionada pero con orientaciones notablemente diferentes.

Una alternativa es un límite torcido donde la desorientación ocurre alrededor de un eje que es perpendicular al plano límite. Este tipo de límite incorpora dos conjuntos de dislocaciones de tornillos . Si los vectores de Burgers de las dislocaciones son ortogonales, entonces las dislocaciones no interactúan fuertemente y forman una red cuadrada. En otros casos, las dislocaciones pueden interactuar para formar una estructura hexagonal más compleja.

Estos conceptos de límites de inclinación y torsión representan casos algo idealizados. La mayoría de los límites son de tipo mixto y contienen dislocaciones de diferentes tipos y vectores de Burgers, para crear el mejor ajuste entre los granos vecinos.

Si las dislocaciones en el límite permanecen aisladas y distintas, se puede considerar que el límite tiene un ángulo bajo. Si la deformación continúa, la densidad de las dislocaciones aumentará y, por tanto, se reducirá el espacio entre las dislocaciones vecinas. Con el tiempo, los núcleos de las dislocaciones comenzarán a superponerse y la naturaleza ordenada de la frontera comenzará a desmoronarse. En este punto se puede considerar que el límite tiene un ángulo alto y que el grano original se ha separado en dos granos completamente separados.

En comparación con los límites de grano de ángulo bajo, los límites de ángulo alto son considerablemente más desordenados, con grandes áreas de mal ajuste y una estructura comparativamente abierta. De hecho, originalmente se pensó que eran algún tipo de capa amorfa o incluso líquida entre los granos. Sin embargo, este modelo no podía explicar la fuerza observada de los límites de los granos y, después de la invención de la microscopía electrónica , la evidencia directa de la estructura de los granos obligó a descartar la hipótesis. Ahora se acepta que una frontera consta de unidades estructurales que dependen tanto de la mala orientación de los dos granos como del plano de la interfaz. Los tipos de unidad estructural que existen se pueden relacionar con el concepto de red de sitios coincidentes , en la que se forman unidades repetidas a partir de puntos donde las dos están mal orientadas. En la teoría de la red de sitios coincidentes (CSL), el grado de ajuste (Σ) entre las Las estructuras de los dos granos se describen mediante el recíproco de la relación de sitios de coincidencia con respecto al número total de sitios. [4] En este marco, es posible dibujar la red para los dos granos y contar el número de átomos que se comparten (sitios de coincidencia) y el número total de átomos en el límite (número total de sitios). Por ejemplo, cuando Σ=3 habrá un átomo de cada tres que se compartirá entre las dos redes. Por lo tanto, se podría esperar que un límite con Σ alto tenga una energía mayor que uno con Σ bajo. Los límites de ángulo bajo, donde la distorsión se acomoda completamente mediante dislocaciones, son Σ1. Algunos otros límites de bajo Σ tienen propiedades especiales, especialmente cuando el plano límite contiene una alta densidad de sitios coincidentes. Los ejemplos incluyen límites gemelos coherentes (p. ej., Σ3) y límites de alta movilidad en materiales FCC (p. ej., Σ7). Las desviaciones de la orientación CSL ideal pueden adaptarse mediante relajación atómica local o la inclusión de dislocaciones en el límite.

Describiendo un límite

Un límite se puede describir mediante la orientación del límite hacia los dos granos y la rotación tridimensional requerida para que los granos coincidan. Por tanto, un límite tiene 5 grados de libertad macroscópicos . Sin embargo, es común describir un límite sólo como la relación de orientación de los granos vecinos. Generalmente, la conveniencia de ignorar la orientación del plano límite, que es muy difícil de determinar, pesa más que la información reducida. La orientación relativa de los dos granos se describe utilizando la matriz de rotación :

La distribución característica de desorientaciones de límites en un conjunto de granos orientados completamente al azar para materiales de simetría cúbica.

Usando este sistema el ángulo de rotación θ es:

mientras que la dirección [uvw] del eje de rotación es:

La naturaleza de la cristalografía involucrada limita la desorientación del límite. Un policristal completamente aleatorio, sin textura, tiene por tanto una distribución característica de desorientaciones de límites (ver figura). Sin embargo, estos casos son raros y la mayoría de los materiales se desviarán de este ideal en mayor o menor grado.

Energía límite

La energía de un límite de inclinación y la energía por dislocación a medida que aumenta la desorientación del límite.

La energía de un límite de ángulo bajo depende del grado de desorientación entre los granos vecinos hasta la transición al estado de ángulo alto. En el caso de límites de inclinación simples , la energía de un límite formado por dislocaciones con el vector b de Burgers y el espaciado h se predice mediante la ecuación de Read-Shockley :

dónde:

donde es el módulo de corte , es la relación de Poisson y es el radio del núcleo de dislocación. Se puede observar que a medida que aumenta la energía de la frontera, la energía por dislocación disminuye. Por lo tanto, existe una fuerza impulsora para producir menos límites y más desorientados (es decir, crecimiento del grano ).

La situación en los límites de ángulo alto es más compleja. Aunque la teoría predice que la energía será mínima para configuraciones CSL ideales, con desviaciones que requieren dislocaciones y otras características energéticas, las mediciones empíricas sugieren que la relación es más complicada. Algunos mínimos previstos en la energía se encuentran como se esperaba, mientras que otros faltan o se reducen sustancialmente. Los estudios de los datos experimentales disponibles han indicado que relaciones simples como baja son engañosas:

Se concluye que ningún criterio general y útil para la baja energía puede encerrarse en un marco geométrico simple. Cualquier comprensión de las variaciones de la energía interfacial debe tener en cuenta la estructura atómica y los detalles del enlace en la interfaz. [5]

exceso de volumen

El exceso de volumen es otra propiedad importante en la caracterización de los límites de grano. Bishop propuso por primera vez el exceso de volumen en una comunicación privada a Aaron y Bolling en 1972. [6] Describe cuánta expansión es inducida por la presencia de un GB y se cree que el grado y la susceptibilidad de la segregación es directamente proporcional a esto. A pesar del nombre, el exceso de volumen es en realidad un cambio de longitud; esto se debe a la naturaleza 2D de los GB, la longitud de interés es la expansión normal al plano GB. El exceso de volumen ( ) se define de la siguiente manera,

a temperatura , presión y número de átomos constantes . Aunque existe una relación lineal aproximada entre la energía GB y el exceso de volumen, las orientaciones donde se viola esta relación pueden comportarse de manera significativamente diferente afectando las propiedades mecánicas y eléctricas. [7]

Se han desarrollado técnicas experimentales que analizan directamente el exceso de volumen y se han utilizado para explorar las propiedades del cobre y el níquel nanocristalinos . [8] [9] También se han desarrollado métodos teóricos [10] y están en buen acuerdo. Una observación clave es que existe una relación inversa con el módulo de volumen, lo que significa que cuanto mayor sea el módulo de volumen (la capacidad de comprimir un material), menor será el exceso de volumen; también existe una relación directa con la constante de red, esto proporciona la metodología. para encontrar materiales con un exceso de volumen deseable para una aplicación específica.

Migración fronteriza

El movimiento de los límites de grano (HAGB) tiene implicaciones para la recristalización y el crecimiento del grano, mientras que el movimiento de los límites de subgrano (LAGB) influye fuertemente en la recuperación y la nucleación de la recristalización.

Una frontera se mueve debido a una presión que actúa sobre ella. Generalmente se supone que la velocidad es directamente proporcional a la presión y que la constante de proporcionalidad es la movilidad del límite. La movilidad depende en gran medida de la temperatura y a menudo sigue una relación de tipo Arrhenius :

La energía de activación aparente (Q) puede estar relacionada con los procesos atomísticos activados térmicamente que ocurren durante el movimiento de los límites. Sin embargo, existen varios mecanismos propuestos en los que la movilidad dependerá de la presión de conducción y la proporcionalidad asumida puede fracasar.

Generalmente se acepta que la movilidad de los límites de ángulo bajo es mucho menor que la de los límites de ángulo alto. Las siguientes observaciones parecen ser ciertas en una variedad de condiciones:

Dado que los límites de ángulo bajo están compuestos por conjuntos de dislocaciones y su movimiento puede estar relacionado con la teoría de las dislocaciones. El mecanismo más probable, dados los datos experimentales, es el de ascenso de dislocaciones, velocidad limitada por la difusión del soluto en la masa. [11]

El movimiento de los límites de ángulos elevados se produce mediante la transferencia de átomos entre los granos vecinos. La facilidad con la que esto puede ocurrir dependerá de la estructura del límite, que a su vez depende de la cristalografía de los granos involucrados, los átomos de impureza y la temperatura. Es posible que alguna forma de mecanismo sin difusión (similar a las transformaciones de fase sin difusión como la martensita ) pueda funcionar en determinadas condiciones. Algunos defectos en la frontera, como escalones y repisas, también pueden ofrecer mecanismos alternativos para la transferencia atómica.

El crecimiento del grano puede ser inhibido por partículas de la segunda fase mediante fijación Zener .

Dado que un límite de ángulo alto está imperfectamente empaquetado en comparación con la red normal, tiene cierta cantidad de espacio libre o volumen libre donde los átomos de soluto pueden poseer una energía más baja. Como resultado, un límite puede estar asociado con una atmósfera de soluto que retardará su movimiento. Sólo a velocidades más altas la frontera podrá liberarse de su atmósfera y reanudar su movimiento normal.

Tanto los límites de ángulo bajo como los de alto ángulo se retardan por la presencia de partículas a través del llamado efecto Zener pinning . Este efecto a menudo se aprovecha en aleaciones comerciales para minimizar o prevenir la recristalización o el crecimiento del grano durante el tratamiento térmico .

Tez

Los límites de grano son el sitio preferencial para la segregación de impurezas, que pueden formar una capa delgada con una composición diferente a la del resto y una variedad de estructuras atómicas que son distintas de las fases cristalinas contiguas. Por ejemplo, en el nitruro de silicio suele haber una fina capa de sílice, que también contiene cationes de impurezas.

Ming Tang, Rowland Cannon y W. Craig Carter introdujeron las complexiones de los límites de grano en 2006. [12]

Estas fases de límite de grano son termodinámicamente estables y pueden considerarse como fases cuasi bidimensionales, que pueden sufrir una transición, similar a las de las fases masivas. En este caso, es posible que se produzcan cambios abruptos en la estructura y la química en un valor crítico de un parámetro termodinámico como la temperatura o la presión. [13] Esto puede afectar fuertemente las propiedades macroscópicas del material, por ejemplo la resistencia eléctrica o las tasas de fluencia. [14] Los límites de los granos pueden analizarse utilizando la termodinámica de equilibrio, pero no pueden considerarse fases porque no satisfacen la definición de Gibbs: son no homogéneos y pueden tener un gradiente de estructura, composición o propiedades. Por este motivo se definen como complexión: un material o estado interfacial que está en equilibrio termodinámico con sus fases contiguas, con un espesor finito y estable (que suele ser de 2 a 20 Å). Un cutis necesita la fase siguiente para existir y su composición y estructura deben ser diferentes de la fase siguiente. A diferencia de las fases masivas, la tez también depende de la fase siguiente. Por ejemplo, la capa amorfa rica en sílice presente en Si 3 N 3 tiene un espesor de aproximadamente 10 Å, pero para límites especiales este espesor de equilibrio es cero. [15] La tez se puede agrupar en 6 categorías, según su espesor: monocapa, bicapa, tricapa, nanocapa (con espesor de equilibrio entre 1 y 2 nm) y humectación. En los primeros casos el espesor de la capa será constante; si hay material adicional, se segregará en la unión de múltiples granos, mientras que en el último caso no hay espesor de equilibrio y esto está determinado por la cantidad de fase secundaria presente en el material. Un ejemplo de transición de la complexión del límite de grano es el paso del límite seco a la capa bicapa en Si dopado con Au, que se produce por el aumento de Au. [dieciséis]

Efecto a la estructura electrónica.

Los límites de grano pueden causar fallas mecánicas por fragilización a través de la segregación de solutos (ver Hinkley Point, una central nuclear ), pero también pueden afectar perjudicialmente las propiedades electrónicas. En el caso de los óxidos metálicos se ha demostrado teóricamente que en los límites de grano de Al 2 O 3 y MgO las propiedades aislantes pueden verse claramente disminuidas. [17] Utilizando la teoría funcional de la densidad, simulaciones por computadora de los límites de los granos han demostrado que la banda prohibida se puede reducir hasta en un 45%. [18] En el caso de metales, los límites de grano aumentan la resistividad a medida que el tamaño de los granos en relación con el recorrido libre medio de otras dispersiones se vuelve significativo. [19]

Concentración de defectos cerca de los límites de grano

Se sabe que la mayoría de los materiales son policristalinos y contienen límites de grano y que los límites de grano pueden actuar como sumideros y vías de transporte para defectos puntuales. Sin embargo, es difícil determinar experimental y teóricamente qué efecto tienen los defectos puntuales en un sistema. [20] [21] [22] Ejemplos interesantes de las complicaciones de cómo se comportan los defectos puntuales se han manifestado en la dependencia de la temperatura del efecto Seebeck. [23] Además, la respuesta dieléctrica y piezoeléctrica puede verse alterada por la distribución de defectos puntuales cerca de los límites de los granos. [24] Las propiedades mecánicas también pueden verse influenciadas significativamente, ya que propiedades como el módulo de volumen y la amortiguación se ven influenciadas por cambios en la distribución de defectos puntuales dentro de un material. [25] [26] También se ha descubierto que el efecto Kondo dentro del grafeno se puede ajustar debido a una relación compleja entre los límites de los granos y los defectos puntuales. [27] Cálculos teóricos recientes han revelado que los defectos puntuales pueden ser extremadamente favorables cerca de ciertos tipos de límites de grano y afectar significativamente las propiedades electrónicas con una reducción en la banda prohibida. [28]

Relación entre teoría y experimento.

Se ha realizado una cantidad significativa de trabajo experimental para observar tanto la estructura como medir las propiedades de los límites de los granos, pero los grados de libertad de cinco dimensiones de los límites de los granos dentro de redes policristalinas complejas aún no se han entendido completamente y, por lo tanto, actualmente no existe ningún método para controlarlos. la estructura y propiedades de la mayoría de los metales y aleaciones con precisión atómica. [29] Parte del problema está relacionado con el hecho de que gran parte del trabajo teórico para comprender los límites de los granos se basa en la construcción de (dos) granos bicristales que no representan la red de granos que normalmente se encuentran en un sistema real y el uso de Los campos de fuerza clásicos, como el método del átomo incrustado, a menudo no describen correctamente la física cerca de los granos y podría ser necesaria la teoría del funcional de densidad para brindar información realista. Un modelado preciso de los límites de los granos, tanto en términos de estructura como de interacciones atómicas, podría tener el efecto de mejorar la ingeniería, lo que podría reducir el desperdicio y aumentar la eficiencia en términos de uso y rendimiento del material. Desde un punto de vista computacional gran parte de la investigación sobre límites de grano se ha centrado en sistemas bicristalinos, estos son sistemas que solo consideran dos límites de grano. Ha habido trabajos recientes que han utilizado nuevos modelos de evolución de granos que muestran que existen diferencias sustanciales en las propiedades de los materiales asociadas con la presencia de granos curvos o planos. [30]

Ver también

Referencias

  1. ^ Lehockey, EM; Palumbo, G.; Lin, P.; Brennenstuhl, AM (15 de mayo de 1997). "Sobre la relación entre la distribución de los caracteres de los límites de grano y la corrosión intergranular". Scripta Materialia . 36 (10): 1211-1218. doi :10.1016/S1359-6462(97)00018-3. ISSN  1359-6462.
  2. ^ Raj, R.; Ashby, MF (1 de abril de 1971). "Sobre el deslizamiento de los límites del grano y la fluencia por difusión". Transacciones Metalúrgicas . 2 (4): 1113–1127. Código bibliográfico : 1971MT......2.1113R. doi :10.1007/BF02664244. ISSN  1543-1916. S2CID  135851757.
  3. ^ Fundamentos físicos de la ciencia de materiales; Gottstein, Günter; 2014, ISBN 978-3-662-09291-0 
  4. ^ Más sombrío, H.; Bollmann, W.; Warrington, DH (1 de marzo de 1974). "Redes de sitios de coincidencia y cambio de patrón completo en cristales cúbicos". Acta Crystallographica Sección A. 30 (2): 197–207. Código bibliográfico : 1974AcCrA..30..197G. doi :10.1107/S056773947400043X.
  5. ^ Sutton, AP; Balluffi, RW (1987), "Resumen nº 61: Sobre criterios geométricos para baja energía interfacial", Acta Metallurgica , 35 (9): 2177–2201, doi :10.1016/0001-6160(87)90067-8
  6. ^ Aarón, HB; Bolling, GF (1972). "El volumen libre como criterio para modelos de límites de grano". Ciencia de la superficie . 31 (C): 27–49. Código bibliográfico : 1972SurSc..31...27A. doi :10.1016/0039-6028(72)90252-X.
  7. ^ Lobo, D. (1989). "Correlación entre energía y expansión de volumen para límites de grano en metales FCC". Scripta Metalúrgica . 23 (11): 1913-1918. doi :10.1016/0036-9748(89)90482-1.
  8. ^ Steyskal, EM; Oberdorfer, B.; Sprengel, W.; Zehetbauer, M.; Pippan, R.; Würschum, R. (2012). "Determinación experimental directa del exceso de volumen en los límites de grano en metales". Física. Rev. Lett . 108 (5): 055504. Código bibliográfico : 2012PhRvL.108e5504S. doi : 10.1103/PhysRevLett.108.055504 . PMID  22400941.
  9. ^ Oberdorfer, B.; Setman, D.; Steyskal, EM; Hohenwarter, A.; Sprengel, W.; Zehetbauer, M.; Pippan, R.; Würschum, R. (2014). "Exceso de volumen en el límite de grano y defecto de recocido del cobre después de torsión a alta presión". Acta Mater . 68 (100): 189-195. Código Bib : 2014AcMat..68..189O. doi :10.1016/j.actamat.2013.12.036. PMC 3990421 . PMID  24748848. 
  10. ^ Frijol, Jonathan J.; McKenna, Keith P. (2016). "Origen de las diferencias en el exceso de volumen de los límites de grano de cobre y níquel". Acta Materialia . 110 : 246–257. Código Bib : 2016AcMat.110..246B. doi : 10.1016/j.actamat.2016.02.040 .
  11. ^ Humphreys, FJ; Hatherly, M. (2004), Recristalización y fenómenos de recocido relacionados , Elsevier , págs. xxx+628, ISBN 978-0-08-044164-1- vía ScienceDirect
  12. ^ Espiga, M; Cañón, RM; Carter, WC (2006). "Transiciones de límites de grano en aleaciones binarias". Cartas de revisión física . 97 (075502): 075502. doi : 10.1103/PhysRevLett.97.075502.
  13. ^ Sutton AP, Balluffi RW. (1995) Interfaces en materiales cristalinos. Oxford: Publicaciones científicas de Oxford.
  14. ^ HartEW (1972). La naturaleza y comportamiento de los límites de grano. Nueva York: Pleno; pag. 155.
  15. ^ Cantwell, relaciones públicas; et al. (2014). "Tez de límites de grano". Acta Materialia . 62 : 1–48. Código Bib : 2014AcMat..62....1C. doi :10.1016/j.actamat.2013.07.037. Archivado desde el original el 24 de septiembre de 2017.
  16. ^ Ma S. y otros. Scripta Mater (2012) n66, p203.
  17. ^ Guhl, Hannes; Lee, Hak-Sung; Tangney, Pablo; Foulkes, WMC; Heuer, Arthur H.; Nakagawa, Tsubasa; Ikuhara, Yuichi; Finnis, Michael W. (2015). "Propiedades estructurales y electrónicas de los límites de grano Σ7 en α-Al 2 O 3 ". Acta Materialia . 99 . Elsevier BV: 16-28. Código Bib : 2015AcMat..99...16G. doi :10.1016/j.actamat.2015.07.042. hdl : 10044/1/25490 . ISSN  1359-6454. S2CID  94617212.
  18. ^ Frijol, Jonathan J.; Saito, Mitsuhiro; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Oh no, Hideo; Ikuhara, Yuichi; McKenna, Keith P. (4 de abril de 2017). "Estructura atómica y propiedades electrónicas de los límites de los granos de MgO en dispositivos magnetorresistivos de túneles". Informes científicos . 7 (1). Springer Science and Business Media LLC: 45594. Bibcode : 2017NatSR...745594B. doi :10.1038/srep45594. ISSN  2045-2322. PMC 5379487 . PMID  28374755. 
  19. ^ Mayadas, AF; Shatzkes, M. (15 de febrero de 1970). "Modelo de resistividad eléctrica para películas policristalinas: el caso de la reflexión arbitraria en superficies externas". Revisión física B. 1 (4). Sociedad Estadounidense de Física (APS): 1382–1389. Código bibliográfico : 1970PhRvB...1.1382M. doi :10.1103/physrevb.1.1382. ISSN  0556-2805.
  20. ^ McCluskey, médico; Jokela, SJ (2009). "Defectos en ZnO". Revista de Física Aplicada . 106 (7): 071101–071101–13. Código Bib : 2009JAP...106g1101M. doi : 10.1063/1.3216464. S2CID  122634653.
  21. ^ Meyer, René; Waser, Rainer; Helmbold, Julia; Borchardt, Günter (2003). "Observación de la migración de defectos de vacantes en la subred catiónica de óxidos complejos mediante experimentos de O18Tracer". Cartas de revisión física . 90 (10): 105901. Código bibliográfico : 2003PhRvL..90j5901M. doi :10.1103/PhysRevLett.90.105901. PMID  12689009. S2CID  11680149.
  22. ^ Uberuaga, Blas Pedro; Vernon, Luis J.; Martínez, Enrique; Votante, Arthur F. (2015). "La relación entre la estructura de los límites de grano, la movilidad de los defectos y la eficiencia del sumidero de los límites de grano". Informes científicos . 5 : 9095. Código Bib : 2015NatSR...5E9095U. doi :10.1038/srep09095. PMC 4357896 . PMID  25766999. 
  23. ^ Kishimoto, Kengo; Tsukamoto, Masayoshi; Koyanagi, Tsuyoshi (2002). "Dependencia de la temperatura del coeficiente de Seebeck y la barrera potencial de dispersión de películas de Pb Te de tipo n preparadas sobre sustratos de vidrio calentados mediante pulverización catódica por rf". Revista de Física Aplicada . 92 (9): 5331–5339. Código Bib : 2002JAP....92.5331K. doi :10.1063/1.1512964.
  24. ^ Bassiri-Gharb, Nazanin; Fujii, Ichiro; Hong, Eunki; Trolier-Mckinstry, Susan; Taylor, David V.; Damjanovic, Dragan (2007). "Contribuciones de la pared de dominio a las propiedades de las películas delgadas piezoeléctricas". Revista de Electrocerámica . 19 : 49–67. doi :10.1007/s10832-007-9001-1. S2CID  137189236.
  25. ^ Maldita sea, Khanh Q.; Spearot, Douglas E. (2014). "Efecto de los defectos puntuales y de límites de grano sobre el comportamiento mecánico de la monocapa MoS2 bajo tensión mediante simulaciones atomísticas". Revista de Física Aplicada . 116 (1): 013508. Código bibliográfico : 2014JAP...116a3508D. doi : 10.1063/1.4886183.
  26. ^ Zhang, J.; Pérez, RJ; Lavernia, EJ (1993). "Amortiguación inducida por dislocaciones en compuestos de matriz metálica". Revista de ciencia de materiales . 28 (3): 835–846. Código Bib : 1993JMatS..28..835Z. doi :10.1007/BF01151266. S2CID  137660500.
  27. ^ Chen, Jian-Hao; Li, Liang; Cullen, William G.; Williams, Ellen D.; Führer, Michael S. (2011). "Efecto Kondo sintonizable en grafeno con defectos". Física de la Naturaleza . 7 (7): 535–538. arXiv : 1004.3373 . Código bibliográfico : 2011NatPh...7..535C. doi : 10.1038/nphys1962. S2CID  119210230.
  28. ^ Frijol, Jonathan J.; McKenna, Keith P. (2018). "Estabilidad de defectos puntuales cerca de los límites de los granos de MgO en uniones de túnel magnético FeCoB/MgO/FeCoB" (PDF) . Materiales de revisión física . 2 (12): 125002. Código bibliográfico : 2018PhRvM...2l5002B. doi :10.1103/PhysRevMaterials.2.125002. S2CID  197631853.
  29. ^ Korolev, VV; Frijol, JJ (2022). "Comparación de distribuciones de energía y caracteres de límites de granos de cinco dimensiones e inferiores en cobre: ​​experimento y simulación de estática molecular". Metall Mater Trans A. 54 (2): 449–459. Código Bib : 2022MMTA...53..449K. doi :10.1007/s11661-021-06500-5. S2CID  245636012.
  30. ^ Forrest, Robert M.; Lazar, Emanuel A.; Goel, Saurav; Bean, Jonathan J. (2022). "Cuantificar las diferencias en propiedades entre policristales que contienen límites de grano planos y curvos". Nanofabricación . 7 . doi : 10.37819/nanofab.007.250 . S2CID  254337504.

Otras lecturas