La homoquiralidad es una uniformidad de quiralidad o lateralidad. Los objetos son quirales cuando no se pueden superponer a sus imágenes especulares. Por ejemplo, las manos izquierda y derecha de un ser humano son aproximadamente imágenes especulares entre sí, pero no son sus propias imágenes especulares, por lo que son quirales. En biología , 19 de los 20 aminoácidos naturales son homoquirales, siendo L -quirales (zurdos), mientras que los azúcares son D -quirales (diestros). [1] La homoquiralidad también puede referirse a sustancias enantiopuras en las que todos los constituyentes son el mismo enantiómero (una versión diestra o zurda de un átomo o molécula), pero algunas fuentes desaconsejan este uso del término.
No está claro si la homoquiralidad tiene un propósito; sin embargo, parece ser una forma de almacenamiento de información. [2] Una sugerencia es que reduce las barreras de entropía en la formación de grandes moléculas organizadas. [3] Se ha verificado experimentalmente que los aminoácidos forman agregados grandes en mayor abundancia a partir de muestras enantiopuras del aminoácido que a partir de muestras racémicas (mezcladas enantioméricamente). [3]
No está claro si la homoquiralidad surgió antes o después de la vida, y se han propuesto muchos mecanismos para su origen. [4] Algunos de estos modelos proponen tres pasos distintos: la ruptura de la simetría especular crea un pequeño desequilibrio enantiomérico, la amplificación quiral se basa en este desequilibrio y la transmisión quiral es la transferencia de quiralidad de un conjunto de moléculas a otro.
Los aminoácidos son los componentes básicos de los péptidos y las enzimas , mientras que las cadenas de azúcar-péptido son la columna vertebral del ARN y el ADN . [5] [6] En los organismos biológicos, los aminoácidos aparecen casi exclusivamente en la forma levógira ( L -aminoácidos) y los azúcares en la forma diestra (R-azúcares). [7] [ verificación necesaria ] Dado que las enzimas catalizan reacciones, imponen la homoquiralidad en una gran variedad de otras sustancias químicas, incluidas hormonas , toxinas, fragancias y sabores de alimentos. [8] : 493–494 La glicina es aquiral, al igual que algunos otros aminoácidos no proteinogénicos que son aquirales (como la dimetilglicina ) o de la forma enantiomérica D.
Los organismos biológicos discriminan fácilmente entre moléculas con diferentes quiralidades. Esto puede afectar a reacciones fisiológicas como el olfato y el gusto. La carvona , un terpenoide que se encuentra en los aceites esenciales , huele a menta en su forma L y a alcaravea en su forma R. [8] : 494 [ verificación necesaria ] El limoneno sabe a cítricos cuando se usa con la mano derecha y a pino cuando se usa con la mano izquierda. [9] : 168
La homoquiralidad también afecta la respuesta a los fármacos. La talidomida , en su forma levógira, cura las náuseas matutinas ; en su forma diestra, causa defectos de nacimiento. [9] : 168 Desafortunadamente, incluso si se administra una versión levógira pura, parte de ella puede convertirse en la forma diestra en el paciente. [10] Muchos fármacos están disponibles tanto como mezcla racémica (cantidades iguales de ambas quirales) como fármaco enantiopuro (solo una quiralidad). Dependiendo del proceso de fabricación, las formas enantiopuras pueden ser más caras de producir que las mezclas estereoquímicas. [9] : 168
Las preferencias quirales también se pueden encontrar a nivel macroscópico. Las conchas de los caracoles pueden ser hélices que giran hacia la derecha o hacia la izquierda, pero una forma u otra es fuertemente preferida en una especie dada. En el caracol comestible Helix pomatia , solo uno de cada 20.000 es helicoidal hacia la izquierda. [11] : 61–62 El enrollamiento de las plantas puede tener una quiralidad preferida e incluso el movimiento de masticación de las vacas tiene un exceso del 10% en una dirección. [12]
Las teorías sobre el origen de la homoquiralidad en las moléculas de la vida pueden clasificarse como deterministas o basadas en el azar, dependiendo del mecanismo propuesto. Si existe una relación entre causa y efecto (es decir, un campo quiral específico o una influencia que causa la ruptura de la simetría especular), la teoría se clasifica como determinista; en caso contrario, se clasifica como una teoría basada en mecanismos de azar (en el sentido de aleatoriedad). [13]
Otra clasificación de las diferentes teorías sobre el origen de la homoquiralidad biológica podría hacerse dependiendo de si la vida surgió antes del paso de enantiodiscriminación (teorías bióticas) o después (teorías abióticas). Las teorías bióticas sostienen que la homoquiralidad es simplemente el resultado del proceso natural de autoamplificación de la vida: o bien la formación de la vida con preferencia por una u otra quiralidad fue un evento fortuito y poco frecuente que ocurrió con las quiralidades que observamos, o bien todas las quiralidades de la vida surgieron rápidamente pero debido a eventos catastróficos y una fuerte competencia, las otras preferencias quirales no observadas fueron eliminadas por la preponderancia y el enriquecimiento metabólico y enantiomérico de las opciones de quiralidad "ganadoras". [ cita requerida ] Si este fuera el caso, deberían encontrarse restos del signo de quiralidad extinto. Como este no es el caso, hoy en día las teorías bióticas ya no tienen respaldo.
La aparición del consenso de quiralidad como un proceso de autoamplificación natural también se ha asociado con la segunda ley de la termodinámica . [14]
Las teorías deterministas se pueden dividir en dos subgrupos: si la influencia quiral inicial tuvo lugar en un espacio o tiempo específico (promediando cero en áreas de observación o períodos de tiempo suficientemente grandes), la teoría se clasifica como determinista local; si la influencia quiral es permanente en el momento en que ocurrió la selección quiral, entonces se clasifica como determinista universal. Los grupos de clasificación para las teorías deterministas locales y las teorías basadas en mecanismos aleatorios pueden superponerse. Incluso si una influencia quiral externa produjo el desequilibrio quiral inicial de manera determinista, el signo del resultado podría ser aleatorio ya que la influencia quiral externa tiene su contraparte enantiomérica en otra parte.
En las teorías deterministas, el desequilibrio enantiomérico se crea debido a un campo o influencia quiral externa, y el signo final impreso en las biomoléculas se deberá a él. Los mecanismos deterministas para la producción de mezclas no racémicas a partir de materiales de partida racémicos incluyen: leyes físicas asimétricas, como la interacción electrodébil (a través de rayos cósmicos [15] ) o entornos asimétricos, como los causados por la luz polarizada circularmente , los cristales de cuarzo o la rotación de la Tierra, la β-radiólisis o el efecto magnetoquiral. [16] [17] La teoría determinista universal más aceptada es la interacción electrodébil. Una vez establecida, se seleccionaría la quiralidad. [18]
Una suposición es que el descubrimiento de un desequilibrio enantiomérico en las moléculas del meteorito Murchison apoya un origen extraterrestre de la homoquiralidad: hay evidencia de la existencia de luz polarizada circularmente originada por la dispersión de Mie en partículas de polvo interestelar alineadas que pueden desencadenar la formación de un exceso enantiomérico dentro del material quiral en el espacio. [11] : 123–124 Los campos magnéticos interestelares y casi estelares pueden alinear partículas de polvo de esta manera. [19] Otra especulación (la hipótesis de Vester-Ulbricht) sugiere que la quiralidad fundamental de los procesos físicos como el de la desintegración beta (ver Violación de paridad ) conduce a vidas medias ligeramente diferentes de moléculas biológicamente relevantes.
Las teorías del azar se basan en el supuesto de que " la síntesis asimétrica absoluta, es decir, la formación de productos enantioméricamente enriquecidos a partir de precursores aquirales sin la intervención de reactivos químicos quirales o catalizadores, es en la práctica inevitable sólo por razones estadísticas ". [20]
Consideremos el estado racémico como una propiedad macroscópica descrita por una distribución binomial; el experimento de lanzar una moneda, donde los dos resultados posibles son los dos enantiómeros, es una buena analogía. La distribución de probabilidad discreta de obtener n éxitos en los ensayos de Bernoulli, donde el resultado de cada ensayo de Bernoulli ocurre con probabilidad y ocurre lo opuesto con probabilidad, está dada por:
.
La distribución de probabilidad discreta de tener exactamente moléculas de una quiralidad y de la otra, viene dada por:
.
Al igual que en el experimento de lanzar una moneda, en este caso, suponemos que ambos eventos ( o ) son equiprobables, . La probabilidad de tener exactamente la misma cantidad de ambos enantiómeros es inversamente proporcional a la raíz cuadrada del número total de moléculas . Para un mol de un compuesto racémico, moléculas, esta probabilidad se convierte en . La probabilidad de encontrar el estado racémico es tan pequeña que podemos considerarla insignificante.
En este escenario, existe la necesidad de amplificar el exceso enantiomérico estocástico inicial a través de cualquier mecanismo eficiente de amplificación. [4] La vía más probable para este paso de amplificación es la autocatálisis asimétrica . Una reacción química autocatalítica es aquella en la que el producto de reacción es en sí mismo un reactivo, en otras palabras, una reacción química es autocatalítica si el producto de reacción es en sí mismo el catalizador de la reacción. En la autocatálisis asimétrica, el catalizador es una molécula quiral, lo que significa que una molécula quiral está catalizando su propia producción. Un exceso enantiomérico inicial, como el que puede producirse mediante luz polarizada, permite entonces que el enantiómero más abundante supere al otro.
En 1953, Charles Frank propuso un modelo para demostrar que la homoquiralidad es una consecuencia de la autocatálisis . [21] [22] En su modelo, los enantiómeros L y D de una molécula quiral se producen autocatalíticamente a partir de una molécula aquiral A
mientras se reprimían mutuamente mediante una reacción que él llamaba antagonismo mutuo
En este modelo, el estado racémico es inestable en el sentido de que el más mínimo exceso enantiomérico se amplificará hasta un estado completamente homoquiral. Esto se puede demostrar calculando las velocidades de reacción a partir de la ley de acción de masas :
donde es la constante de velocidad para las reacciones autocatalíticas, es la constante de velocidad para la reacción de antagonismo mutuo y la concentración de A se mantiene constante para simplificar.
Las soluciones analíticas para son . La relación aumenta a una tasa más que exponencial si es positiva (y viceversa). Cada condición de partida es diferente a
conducen a una de las asíntotas o . Por lo tanto, la igualdad de y y por lo tanto de y representa una condición de equilibrio inestable, dependiendo este resultado de la presencia del término que representa antagonismo mutuo.
Definiendo el exceso enantiomérico como
La tasa de cambio del exceso enantiomérico se puede calcular utilizando la regla de la cadena a partir de la tasa de cambio de las concentraciones de los enantiómeros L y D.
El análisis de estabilidad lineal de esta ecuación muestra que el estado racémico es inestable. A partir de casi cualquier punto del espacio de concentración, el sistema evoluciona hacia un estado homoquiral.
En general, se entiende que la autocatálisis por sí sola no produce homoquiralidad, y que la presencia de la relación mutuamente antagónica entre los dos enantiómeros es necesaria para la inestabilidad de la mezcla racémica. Sin embargo, estudios recientes muestran que la homoquiralidad podría lograrse a partir de la autocatálisis en ausencia de la relación mutuamente antagónica, pero el mecanismo subyacente para la ruptura de la simetría es diferente. [4] [23]
Existen varios experimentos de laboratorio que demuestran cómo una pequeña cantidad de un enantiómero al inicio de una reacción puede conducir a un gran exceso de un solo enantiómero como producto. Por ejemplo, la reacción de Soai es autocatalítica . [24] [25] Si la reacción se inicia con alguno de los enantiómeros del producto ya presente, el producto actúa como un catalizador enantioselectivo para la producción de más de ese mismo enantiómero. [26] La presencia inicial de solo 0,2 equivalentes de un enantiómero puede conducir a un exceso enantiomérico de hasta el 93% del producto.
Otro estudio [27] se refiere a la aminoxilación de propionaldehído catalizada por prolina mediante nitrosobenzeno . En este sistema, un pequeño exceso enantiomérico de catalizador conduce a un gran exceso enantiomérico de producto.
Los grupos de octámeros de serina [28] [29] también son candidatos. Estos grupos de 8 moléculas de serina aparecen en la espectrometría de masas con una preferencia homoquiral inusual, sin embargo, no hay evidencia de que dichos grupos existan en condiciones no ionizantes y el comportamiento de la fase de aminoácidos es mucho más relevante prebióticamente. [30] La reciente observación de que la sublimación parcial de una muestra de leucina enantioenriquecida al 10% da como resultado un enriquecimiento de hasta el 82% en el sublimado muestra que el enantioenriquecimiento de aminoácidos podría ocurrir en el espacio. [31] Los procesos de sublimación parcial pueden tener lugar en la superficie de los meteoros donde existen grandes variaciones de temperatura. Este hallazgo puede tener consecuencias para el desarrollo del Detector Orgánico de Marte programado para su lanzamiento en 2013, que tiene como objetivo recuperar cantidades traza de aminoácidos de la superficie de Marte exactamente mediante una técnica de sublimación.
También está presente una alta amplificación asimétrica del exceso enantiomérico de azúcares en la formación asimétrica de carbohidratos catalizada por aminoácidos [32].
Un estudio clásico implica un experimento que se lleva a cabo en el laboratorio. [33] Cuando se permite que el clorato de sodio cristalice a partir del agua y los cristales recolectados se examinan en un polarímetro , cada cristal resulta ser quiral y estar en forma L o en forma D. En un experimento ordinario, la cantidad de cristales L recolectados es igual a la cantidad de cristales D (corregido para efectos estadísticos). Sin embargo, cuando la solución de clorato de sodio se agita durante el proceso de cristalización, los cristales son exclusivamente L o exclusivamente D. En 32 experimentos de cristalización consecutivos, 14 experimentos entregan cristales D y otros 18 cristales L. La explicación de esta ruptura de simetría no está clara, pero está relacionada con la autocatálisis que tiene lugar en el proceso de nucleación .
En un experimento relacionado, una suspensión cristalina de un derivado de aminoácido racémico agitado continuamente, da como resultado una fase cristalina del 100% de uno de los enantiómeros porque el par enantiomérico es capaz de equilibrarse en solución (comparar con la resolución cinética dinámica ). [34]
Una vez que se ha producido un enriquecimiento enantiomérico significativo en un sistema, es habitual la transferencia de quiralidad a través de todo el sistema. Este último paso se conoce como el paso de transmisión quiral. Muchas estrategias en la síntesis asimétrica se basan en la transmisión quiral. Especialmente importante es la denominada organocatálisis de reacciones orgánicas por prolina, por ejemplo en las reacciones de Mannich .
Algunos modelos propuestos para la transmisión de la asimetría quiral son la polimerización, [35] [36] [37 ] [38] [39] [40] la epimerización [41] [42] o la copolimerización. [43] [44]
Un estudio/experimento sobre la homoquiralidad realizado por Ş. Furkan Öztürk en "Una nueva perspectiva sobre el origen de la homoquiralidad biológica" nos da "una nueva perspectiva sobre el origen de la homoquiralidad biológica".
En su tesis, afirma : "Estudiamos la cristalización selectiva de espín de la riboaminooxazolina racémica (RAO), un precursor central del ARN , sobre superficies de magnetita ( Fe3O4 ), logrando la homoquiralidad en dos pasos de cristalización. Además, hemos demostrado la magnetización por avalancha de magnetita inducida por quiralidad por moléculas de RAO, lo que verifica la naturaleza recíproca del efecto y permite una retroalimentación cooperativa entre las moléculas quirales y las superficies magnéticas. Finalmente, con base en evidencia empírica, proponemos una vía a través de la cual la homoquiralidad lograda en un solo compuesto quiral, RAO, puede propagarse eficientemente a través de toda la red prebiótica, comenzando por los ácidos nucleicos D, a los L-péptidos, y luego a los metabolitos homoquirales".
"Nuestros resultados demuestran una forma prebióticamente plausible de lograr homoquiralidad a nivel de sistemas a partir de materiales de partida completamente racémicos a través de un proceso iniciado por el entorno físico".
No existe ninguna teoría que explique las correlaciones entre los L -aminoácidos. Si tomamos, por ejemplo, la alanina , que tiene un pequeño grupo metilo , y la fenilalanina , que tiene un grupo bencilo más grande , una pregunta simple es en qué aspecto la L -alanina se parece más a la L -fenilalanina que a la D -fenilalanina, y qué tipo de mecanismo causa la selección de todos los L -aminoácidos, porque podría ser posible que la alanina fuera L y la fenilalanina fuera D.
Se informó [45] en 2004 que el exceso de D , L -asparagina racémica (Asn), que forma espontáneamente cristales de cualquiera de los isómeros durante la recristalización, induce la resolución asimétrica de un aminoácido racémico coexistente como arginina (Arg), ácido aspártico (Asp), glutamina (Gln), histidina (His), leucina (Leu), metionina (Met), fenilalanina (Phe), serina (Ser), valina (Val), tirosina (Tyr) y triptófano (Trp). El exceso enantiomérico ee = 100 ×( L - D )/( L + D ) de estos aminoácidos se correlacionó casi linealmente con el del inductor, es decir, Asn. Cuando se realizaron recristalizaciones a partir de una mezcla de 12 D , L -aminoácidos (Ala, Asp, Arg, Glu, Gln, His, Leu, Met, Ser, Val, Phe y Tyr) y exceso de D , L -Asn, todos los aminoácidos con la misma configuración que Asn se cocristalizaron preferentemente. [45] Fue incidental si el enriquecimiento tuvo lugar en L - o D -Asn, sin embargo, una vez que se hizo la selección, el aminoácido coexistente con la misma configuración en el carbono α estuvo involucrado preferentemente debido a la estabilidad termodinámica en la formación del cristal. Se informó que el ee máximo fue del 100%. Con base en estos resultados, se propone que una mezcla de aminoácidos racémicos causa una resolución óptica espontánea y efectiva, incluso si la síntesis asimétrica de un solo aminoácido no ocurre sin la ayuda de una molécula ópticamente activa.
Este es el primer estudio que aclara razonablemente la formación de quiralidad a partir de aminoácidos racémicos con evidencias experimentales.
Este término fue introducido por Kelvin en 1904, año en que publicó su Conferencia de Baltimore de 1884. Kelvin utilizó el término homoquiralidad como una relación entre dos moléculas, es decir, dos moléculas son homoquirales si tienen la misma quiralidad. [32] [46] Sin embargo, recientemente, homoquiral se ha utilizado en el mismo sentido que enantioméricamente puro. Esto está permitido en algunas revistas (pero no se recomienda), [47] : 342 [48] su significado cambia a la preferencia de un proceso o sistema por un solo isómero óptico en un par de isómeros en estas revistas.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)