stringtranslate.com

Grupo de automorfismo

En matemáticas , el grupo de automorfismos de un objeto X es el grupo que consta de automorfismos de X bajo composición de morfismos . Por ejemplo, si X es un espacio vectorial de dimensión finita , entonces el grupo de automorfismos de X es el grupo de transformaciones lineales invertibles de X a sí mismo (el grupo lineal general de X ). Si, en cambio , X es un grupo, entonces su grupo de automorfismos es el grupo que consta de todos los automorfismos de grupo de X.

Especialmente en contextos geométricos, un grupo de automorfismo también se denomina grupo de simetría . Un subgrupo de un grupo de automorfismo a veces se denomina grupo de transformación .

Los grupos de automorfismos se estudian de forma general en el campo de la teoría de categorías .

Ejemplos

Si X es un conjunto sin estructura adicional, entonces cualquier biyección de X hacia sí mismo es un automorfismo y, por tanto, el grupo de automorfismos de X en este caso es precisamente el grupo simétrico de X. Si el conjunto X tiene una estructura adicional, entonces puede darse el caso de que no todas las biyecciones en el conjunto conserven esta estructura, en cuyo caso el grupo de automorfismos será un subgrupo del grupo simétrico en X. Algunos ejemplos de esto incluyen los siguientes:

Si G es un grupo que actúa sobre un conjunto X , la acción equivale a un homomorfismo de grupo de G al grupo de automorfismo de X y viceversa. De hecho, cada acción G izquierda en un conjunto X determina y, a la inversa, cada homomorfismo define una acción por . Esto se extiende al caso en que el conjunto X tiene más estructura que solo un conjunto. Por ejemplo, si X es un espacio vectorial, entonces una acción grupal de G sobre X es una representación grupal del grupo G , representando a G como un grupo de transformaciones lineales (automorfismos) de X ; estas representaciones son el principal objeto de estudio en el campo de la teoría de la representación .

Aquí hay algunos otros datos sobre los grupos de automorfismos:

En la teoría de categorías

Los grupos de automorfismo aparecen de forma muy natural en la teoría de categorías .

Si X es un objeto en una categoría, entonces el grupo de automorfismos de X es el grupo que consta de todos los morfismos invertibles de X hacia sí mismo. Es el grupo unitario del endomorfismo monoide de X. (Para ver algunos ejemplos, consulte PROP ).

Si hay objetos en alguna categoría, entonces el conjunto de todos es un torsor izquierdo . En términos prácticos, esto dice que una elección diferente de un punto base de difiere inequívocamente por un elemento de , o que cada elección de un punto base es precisamente una elección de una trivialización del torsor.

Si y son objetos en categorías y , y si es un funtor que se asigna a , entonces induce un homomorfismo de grupo , ya que asigna morfismos invertibles a morfismos invertibles.

En particular, si G es un grupo visto como una categoría con un solo objeto * o, más generalmente, si G es un grupoide, entonces cada funtor , C una categoría, se denomina acción o representación de G sobre el objeto , o los objetos . Entonces se dice que esos objetos son -objetos (ya que son actuados por ); cf. -objeto . Si es una categoría de módulo como la categoría de espacios vectoriales de dimensión finita, entonces los objetos también se denominan módulos.

Functor de grupo de automorfismo

Sea un espacio vectorial de dimensión finita sobre un campo k que esté equipado con alguna estructura algebraica (es decir, M es un álgebra de dimensión finita sobre k ). Puede ser, por ejemplo, un álgebra asociativa o un álgebra de Lie .

Ahora, considere k - mapas lineales que preservan la estructura algebraica: forman un subespacio vectorial de . El grupo unitario de es el grupo de automorfismos . Cuando se elige una base en M , es el espacio de matrices cuadradas y es el conjunto cero de algunas ecuaciones polinómicas , y la invertibilidad se describe nuevamente mediante polinomios. Por tanto, es un grupo algebraico lineal sobre k .

Ahora las extensiones de bases aplicadas a la discusión anterior determinan un funtor: [6] es decir, para cada anillo conmutativo R sobre k , considere los R -maps lineales que preservan la estructura algebraica: denotéelo por . Entonces el grupo unitario del anillo de matriz sobre R es el grupo de automorfismo y es un funtor de grupo : un funtor de la categoría de anillos conmutativos sobre k a la categoría de grupos . Aún mejor, está representado por un esquema (ya que los grupos de automorfismos están definidos por polinomios): este esquema se llama esquema de grupo de automorfismos y se denota por .

Sin embargo, en general, es posible que un functor de grupo de automorfismo no esté representado por un esquema.

Ver también

Notas

  1. ^ Primero, si G es simplemente conexo, el grupo de automorfismo de G es el de . En segundo lugar, cada grupo de Lie conectado tiene la forma donde hay un grupo de Lie simplemente conectado y C es un subgrupo central y el grupo de automorfismo de G es el grupo de automorfismo de que conserva C . En tercer lugar, por convención, un grupo de Lie es el segundo contable y tiene, como mucho, muchos componentes conectados; así, el caso general se reduce al caso conexo.

Citas

  1. ^ Hartshorne 1977, cap. II, Ejemplo 7.1.1.
  2. ^ Dummit y Foote 2004, § 2.3. Ejercicio 26.
  3. ^ Hochschild, G. (1952). "El grupo de automorfismo de un grupo de mentiras". Transacciones de la Sociedad Matemática Estadounidense . 72 (2): 209–216. JSTOR  1990752.
  4. ^ Fulton y Harris 1991, ejercicio 8.28.
  5. ^ Milnor 1971, Lema 3.2.
  6. ^ Waterhouse 2012, § 7.6.

Referencias

enlaces externos