El modelo de Ramsey-Cass-Koopmans , o modelo de crecimiento de Ramsey , es un modelo neoclásico de crecimiento económico basado principalmente en el trabajo de Frank P. Ramsey , [1] con extensiones significativas de David Cass y Tjalling Koopmans . [2] [3] El modelo de Ramsey-Cass-Koopmans difiere del modelo de Solow-Swan en que la elección del consumo está explícitamente microfundamentada en un punto en el tiempo y por lo tanto endogeniza la tasa de ahorro . Como resultado, a diferencia del modelo de Solow-Swan, la tasa de ahorro puede no ser constante a lo largo de la transición al estado estacionario de largo plazo . Otra implicación del modelo es que el resultado es Pareto óptimo o Pareto eficiente . [nota 1]
Originalmente, Ramsey planteó el modelo como un problema de planificación social de maximizar los niveles de consumo a lo largo de generaciones sucesivas. [4] Solo más tarde, Cass y Koopmans adoptaron un modelo como descripción de una economía dinámica descentralizada con un agente representativo . El modelo de Ramsey-Cass-Koopmans apunta únicamente a explicar el crecimiento económico de largo plazo en lugar de las fluctuaciones del ciclo económico, y no incluye ninguna fuente de perturbaciones como imperfecciones del mercado, heterogeneidad entre hogares o shocks exógenos . Por lo tanto, los investigadores posteriores ampliaron el modelo, permitiendo shocks de compras gubernamentales, variaciones en el empleo y otras fuentes de perturbaciones, lo que se conoce como teoría del ciclo económico real .
En la configuración habitual, el tiempo es continuo y comienza, para simplificar, en y continúa para siempre. Por supuesto, los únicos factores productivos son el capital y el trabajo , ambos deben ser no negativos. Se supone que la fuerza laboral, que compone la población entera, crece a una tasa constante , es decir , lo que implica que con un nivel inicial en . Finalmente, denotemos la producción agregada y denotemos el consumo agregado.
Las variables que el modelo de Ramsey-Cass-Koopmans pretende describir en última instancia son , el consumo per cápita (o más exactamente, por trabajo ), así como , la denominada intensidad de capital . Lo hace conectando primero la acumulación de capital , escrita en la notación de Newton , con el consumo , describiendo una disyuntiva entre consumo e inversión. Más específicamente, dado que el stock de capital existente decae por la tasa de depreciación (que se supone constante), requiere una inversión de la producción del período actual . Por lo tanto,
La relación entre los factores productivos y la producción agregada se describe mediante la función de producción agregada , . Una opción común es la función de producción Cobb-Douglas , pero generalmente se permite cualquier función de producción que satisfaga las condiciones de Inada . Sin embargo, es importante destacar que se requiere que sea homogénea de grado 1 , lo que económicamente implica rendimientos constantes a escala . Con este supuesto, podemos reexpresar la producción agregada en términos per cápita . Por ejemplo, si usamos la función de producción Cobb-Douglas con , entonces .
Para obtener la primera ecuación clave del modelo de Ramsey-Cass-Koopmans, la ecuación dinámica del stock de capital debe expresarse en términos per cápita . Observando la regla del cociente para , tenemos
una ecuación diferencial no lineal similar al modelo de Solow-Swan .
Si ignoramos el problema de cómo se distribuye el consumo, entonces la tasa de utilidad es una función del consumo agregado. Es decir, . Para evitar el problema del infinito, descontamos exponencialmente la utilidad futura a una tasa de descuento . Un valor alto refleja una gran impaciencia .
El problema del planificador social es maximizar la función de bienestar social .
Supongamos que la economía está poblada por individuos inmortales idénticos con funciones de utilidad inmutables (un agente representativo ), de modo que la utilidad total es: Se supone que la función de utilidad es estrictamente creciente (es decir, no hay un punto de felicidad ) y cóncava en , con , [nota 2] donde es la utilidad marginal del consumo .
Así pues, tenemos el problema del planificador social:
donde se da un stock de capital inicial distinto de cero .
Para asegurar que la integral esté bien definida, imponemos .
La solución, que normalmente se encuentra utilizando una función hamiltoniana , [nota 3] [nota 4] es una ecuación diferencial que describe la evolución óptima del consumo,
La regla de Keynes-Ramsey . [5]
El término , donde es el producto marginal del capital , refleja el rendimiento marginal de la inversión neta , teniendo en cuenta la depreciación del capital y el descuento temporal.
Aquí está la elasticidad de sustitución intertemporal , definida por Es formalmente equivalente a la inversa de la aversión relativa al riesgo . La cantidad refleja la curvatura de la función de utilidad e indica cuánto desea el agente representativo suavizar el consumo a lo largo del tiempo. Si el agente tiene una alta aversión relativa al riesgo, entonces tiene una EIS baja y, por lo tanto, estaría más dispuesto a suavizar el consumo a lo largo del tiempo.
A menudo se supone que es estrictamente monótonamente creciente y cóncava, por lo tanto . En particular, si la utilidad es logarítmica, entonces es constante: Podemos reescribir la regla de Ramsey como donde interpretamos como la "tasa de retraso del consumo", porque si es alta, significa que el agente está consumiendo mucho menos ahora en comparación con más adelante, que es esencialmente de lo que se trata el consumo retrasado.
Las dos ecuaciones diferenciales acopladas para y forman el sistema dinámico de Ramsey–Cass–Koopmans .
El estado estable del sistema se determina fijando y en cero. Existen tres soluciones:
La primera es la única solución en el interior del cuadrante superior. Es un punto de silla (como se muestra a continuación). La segunda es un punto de repulsión. La tercera es un equilibrio estable degenerado.
De forma predeterminada, se tiene en cuenta la primera solución, aunque es importante tener en cuenta las otras dos.
Cualquier trayectoria óptima debe seguir el sistema dinámico. Sin embargo, dado que la variable es una variable de control, en cada intensidad de capital , para encontrar su trayectoria óptima correspondiente, todavía necesitamos encontrar su tasa de consumo inicial . Como resulta, la trayectoria óptima es la única que converge al punto de equilibrio interior. Cualquier otra trayectoria converge al equilibrio de ahorro total con , o diverge a , lo que significa que la economía gasta todo su capital en un tiempo finito. Ambos logran una utilidad general menor que la trayectoria hacia el punto de equilibrio interior.
Una declaración cualitativa sobre la estabilidad de la solución requiere una linealización mediante un polinomio de Taylor de primer orden
donde es la matriz jacobiana evaluada en estado estacionario, [nota 5] dada por
que tiene determinante ya que , es positivo por suposición, y ya que es cóncavo (condición de Inada). Dado que el determinante es igual al producto de los valores propios , los valores propios deben ser reales y de signo opuesto. [6]
Por lo tanto, según el teorema de la variedad estable , el equilibrio es un punto de silla y existe un único brazo estable, o “camino de silla”, que converge en el equilibrio, indicado por la curva azul en el diagrama de fases.
El sistema se denomina “trayectoria de silla de montar estable” ya que todas las trayectorias inestables quedan descartadas por la condición de “no esquema Ponzi ”: [7]
lo que implica que el valor actual del stock de capital no puede ser negativo. [nota 6]
Spear y Young reexaminan la historia del crecimiento óptimo durante los años 1950 y 1960, [8] centrándose en parte en la veracidad del supuesto desarrollo simultáneo e independiente de "El crecimiento óptimo en un modelo agregativo de acumulación de capital" de Cass (publicado en 1965 en la Review of Economic Studies ), y "Sobre el concepto de crecimiento económico óptimo" de Tjalling Koopman (publicado en Study Week on the Econometric Approach to Development Planning, 1965, Roma: Pontificia Academia de Ciencias).
A lo largo de sus vidas, ni Cass ni Koopmans sugirieron nunca que sus resultados que caracterizaban el crecimiento óptimo en el modelo de crecimiento continuo en un sector fueran algo más que "simultáneos e independientes". El hecho de que la cuestión de la prioridad se convirtiera en un tema de discusión se debió únicamente al hecho de que en la versión publicada del trabajo de Koopmans, citó el capítulo de la tesis de Cass que más tarde se convirtió en el artículo RES . En su artículo, Koopmans afirma en una nota a pie de página que Cass obtuvo de forma independiente condiciones similares a las que encuentra Koopmans, y que Cass también considera el caso límite en el que la tasa de descuento tiende a cero en su artículo. Por su parte, Cass señala que "después de que se completó la versión original de este artículo, nos llamó la atención un análisis muy similar de Koopmans. Nos basamos en sus resultados al analizar el caso límite, en el que la tasa de descuento social efectiva tiende a cero". En la entrevista que Cass dio a Macroeconomic Dynamics , le da crédito a Koopmans por señalarle el trabajo previo de Frank Ramsey, afirmando que se sintió avergonzado de no haberlo conocido, pero no dice nada para disipar la afirmación básica de que su trabajo y el de Koopmans eran de hecho independientes.
Spear y Young cuestionan esta historia, basándose en una versión del documento de trabajo de Koopmans que se pasó por alto anteriormente, [9] que fue la base de la presentación de Koopmans, citada con frecuencia, en una conferencia celebrada por la Academia Pontificia de Ciencias en octubre de 1963. [10] En este documento de discusión de Cowles, hay un error. Koopmans afirma en su resultado principal que las ecuaciones de Euler son necesarias y suficientes para caracterizar las trayectorias óptimas en el modelo porque cualquier solución a las ecuaciones de Euler que no converja al estado estable óptimo alcanzaría un límite de consumo cero o de capital cero en un tiempo finito. Este error aparentemente se presentó en la conferencia del Vaticano, aunque en el momento en que Koopmans lo presentó, ningún participante comentó sobre el problema. Esto se puede inferir porque la discusión después de cada presentación de documento en la conferencia del Vaticano se conserva textualmente en el volumen de la conferencia.
En el debate del volumen del Vaticano que siguió a la presentación de un trabajo de Edmond Malinvaud , el problema surge debido a la inclusión explícita por parte de Malinvaud de una denominada "condición de transversalidad" (que Malinvaud llama Condición I) en su trabajo. Al final de la presentación, Koopmans le pregunta a Malinvaud si no es cierto que la Condición I simplemente garantiza que las soluciones de las ecuaciones de Euler que no convergen al estado estable óptimo alcanzan un límite en un tiempo finito. Malinvaud responde que este no es el caso y sugiere que Koopmans observe el ejemplo con funciones de utilidad logarítmica y funciones de producción Cobb-Douglas.
En este punto, Koopmans obviamente reconoce que tiene un problema, pero, basándose en un apéndice confuso de una versión posterior del documento producido después de la conferencia del Vaticano, parece incapaz de decidir cómo abordar la cuestión planteada por la Condición I de Malinvaud.
De la entrevista con Cass en Macroeconomic Dynamics se desprende claramente que Koopmans se reunió con el asesor de tesis de Cass, Hirofumi Uzawa , en las reuniones de invierno de la Econometric Society en enero de 1964, donde Uzawa le informó de que su estudiante [Cass] ya había resuelto este problema. Uzawa debe haberle proporcionado entonces a Koopmans la copia del capítulo de la tesis de Cass, que aparentemente envió bajo la apariencia del Informe Técnico del IMSSS que Koopmans citó en la versión publicada de su artículo. La palabra "apariencia" es apropiada aquí, porque el número de TR que aparece en la cita de Koopmans habría situado la fecha de publicación del informe a principios de los años 1950, lo que claramente no era así.
En la versión publicada del artículo de Koopmans, impone una nueva condición Alfa además de las ecuaciones de Euler, afirmando que las únicas trayectorias admisibles entre las que satisfacen las ecuaciones de Euler son las que convergen al equilibrio óptimo en estado estacionario del modelo. Este resultado se deriva en el artículo de Cass mediante la imposición de una condición de transversalidad que Cass dedujo de secciones relevantes de un libro de Lev Pontryagin . [11] Spear y Young conjeturan que Koopmans tomó esta ruta porque no quería parecer que estaba "tomando prestada" la tecnología de transversalidad de Malinvaud o de Cass.
Basándose en este y otros análisis de las contribuciones de Malinvaud en la década de 1950 —específicamente su intuición de la importancia de la condición de transversalidad— Spear y Young sugieren que el modelo de crecimiento neoclásico podría llamarse mejor modelo Ramsey-Malinvaud-Cass que el título honorífico establecido Ramsey-Cass-Koopmans.