Ratio of the perimeter of Bernoulli's lemniscate to its diameter
Lemniscate of Bernoulli In mathematics , the lemniscate constant ϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter , analogous to the definition of π for the circle.[1] Equivalently, the perimeter of the lemniscate ( x 2 + y 2 ) 2 = x 2 − y 2 {\displaystyle (x^{2}+y^{2})^{2}=x^{2}-y^{2}} is 2ϖ . The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755.[2] It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π ; see Pi § Variant pi .
Sometimes the quantities 2ϖ or ϖ/2 are referred to as the lemniscate constant.[3] [4]
As of 2024 over 1.2 trillion digits of this constant have been calculated.[5]
History Gauss's constant , denoted by G , is equal to ϖ /π ≈ 0.8346268[6] and named after Carl Friedrich Gauss , who calculated it via the arithmetic–geometric mean as 1 / M ( 1 , 2 ) {\displaystyle 1/M{\bigl (}1,{\sqrt {2}}{\bigr )}} . By 1799, Gauss had two proofs of the theorem that M ( 1 , 2 ) = π / ϖ {\displaystyle M{\bigl (}1,{\sqrt {2}}{\bigr )}=\pi /\varpi } where ϖ {\displaystyle \varpi } is the lemniscate constant.[8]
John Todd named two more lemniscate constants, the first lemniscate constant A = ϖ /2 ≈ 1.3110287771 and the second lemniscate constant B = π /(2ϖ ) ≈ 0.5990701173 .[9] [10] [11]
The lemniscate constant ϖ {\displaystyle \varpi } and Todd's first lemniscate constant A {\displaystyle A} were proven transcendental by Carl Ludwig Siegel in 1932 and later by Theodor Schneider in 1937 and Todd's second lemniscate constant B {\displaystyle B} and Gauss's constant G {\displaystyle G} were proven transcendental by Theodor Schneider in 1941.[9] [12] [13] In 1975, Gregory Chudnovsky proved that the set { π , ϖ } {\displaystyle \{\pi ,\varpi \}} is algebraically independent over Q {\displaystyle \mathbb {Q} } , which implies that A {\displaystyle A} and B {\displaystyle B} are algebraically independent as well.[14] [15] But the set { π , M ( 1 , 1 / 2 ) , M ′ ( 1 , 1 / 2 ) } {\displaystyle {\bigl \{}\pi ,M{\bigl (}1,1/{\sqrt {2}}{\bigr )},M'{\bigl (}1,1/{\sqrt {2}}{\bigr )}{\bigr \}}} (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over Q {\displaystyle \mathbb {Q} } .[16] In 1996, Yuri Nesterenko proved that the set { π , ϖ , e π } {\displaystyle \{\pi ,\varpi ,e^{\pi }\}} is algebraically independent over Q {\displaystyle \mathbb {Q} } .[17]
Forms Usually, ϖ {\displaystyle \varpi } is defined by the first equality below, but it has many equivalent forms:[18]
ϖ = 2 ∫ 0 1 d t 1 − t 4 = 2 ∫ 0 ∞ d t 1 + t 4 = ∫ 0 1 d t t − t 3 = ∫ 1 ∞ d t t 3 − t = 4 ∫ 0 ∞ ( 1 + t 4 4 − t ) d t = 2 2 ∫ 0 1 1 − t 4 4 d t = 3 ∫ 0 1 1 − t 4 d t = 2 K ( i ) = 1 2 B ( 1 4 , 1 2 ) = 1 2 2 B ( 1 4 , 1 4 ) = Γ ( 1 / 4 ) 2 2 2 π = 2 − 2 4 ζ ( 3 / 4 ) 2 ζ ( 1 / 4 ) 2 = 2.62205 75542 92119 81046 48395 89891 11941 … , {\displaystyle {\begin{aligned}\varpi &=2\int _{0}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}={\sqrt {2}}\int _{0}^{\infty }{\frac {\mathrm {d} t}{\sqrt {1+t^{4}}}}=\int _{0}^{1}{\frac {\mathrm {d} t}{\sqrt {t-t^{3}}}}=\int _{1}^{\infty }{\frac {\mathrm {d} t}{\sqrt {t^{3}-t}}}\\[6mu]&=4\int _{0}^{\infty }{\Bigl (}{\sqrt[{4}]{1+t^{4}}}-t{\Bigr )}\,\mathrm {d} t=2{\sqrt {2}}\int _{0}^{1}{\sqrt[{4}]{1-t^{4}}}\mathop {\mathrm {d} t} =3\int _{0}^{1}{\sqrt {1-t^{4}}}\,\mathrm {d} t\\[2mu]&=2K(i)={\tfrac {1}{2}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{2}}{\bigr )}={\tfrac {1}{2{\sqrt {2}}}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{4}}{\bigr )}={\frac {\Gamma (1/4)^{2}}{2{\sqrt {2\pi }}}}={\frac {2-{\sqrt {2}}}{4}}{\frac {\zeta (3/4)^{2}}{\zeta (1/4)^{2}}}\\[5mu]&=2.62205\;75542\;92119\;81046\;48395\;89891\;11941\ldots ,\end{aligned}}}
where K is the complete elliptic integral of the first kind with modulus k , Β is the beta function , Γ is the gamma function and ζ is the Riemann zeta function .
The lemniscate constant can also be computed by the arithmetic–geometric mean M {\displaystyle M} ,
ϖ = π M ( 1 , 2 ) . {\displaystyle \varpi ={\frac {\pi }{M{\bigl (}1,{\sqrt {2}}{\bigr )}}}.}
Gauss's constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2 , after his calculation of M ( 1 , 2 ) {\displaystyle M{\bigl (}1,{\sqrt {2}}{\bigr )}} published in 1800: G = 1 M ( 1 , 2 ) {\displaystyle G={\frac {1}{M{\bigl (}1,{\sqrt {2}}{\bigr )}}}} John Todd's lemniscate constants may be given in terms of the beta function B: A = ϖ 2 = 1 4 B ( 1 4 , 1 2 ) , B = π 2 ϖ = 1 4 B ( 1 2 , 3 4 ) . {\displaystyle {\begin{aligned}A&={\frac {\varpi }{2}}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{2}}{\bigr )},\\[3mu]B&={\frac {\pi }{2\varpi }}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{2}},{\tfrac {3}{4}}{\bigr )}.\end{aligned}}}
As a special value of L-functions β ′ ( 0 ) = log ϖ π {\displaystyle \beta '(0)=\log {\frac {\varpi }{\sqrt {\pi }}}}
which is analogous to
ζ ′ ( 0 ) = log 1 2 π {\displaystyle \zeta '(0)=\log {\frac {1}{\sqrt {2\pi }}}}
where β {\displaystyle \beta } is the Dirichlet beta function and ζ {\displaystyle \zeta } is the Riemann zeta function .[20]
Analogously to the Leibniz formula for π , β ( 1 ) = ∑ n = 1 ∞ χ ( n ) n = π 4 , {\displaystyle \beta (1)=\sum _{n=1}^{\infty }{\frac {\chi (n)}{n}}={\frac {\pi }{4}},} we have[21] [22] [23] [24] [25] L ( E , 1 ) = ∑ n = 1 ∞ ν ( n ) n = ϖ 4 {\displaystyle L(E,1)=\sum _{n=1}^{\infty }{\frac {\nu (n)}{n}}={\frac {\varpi }{4}}} where L {\displaystyle L} is the L-function of the elliptic curve E : y 2 = x 3 − x {\displaystyle E:\,y^{2}=x^{3}-x} over Q {\displaystyle \mathbb {Q} } ; this means that ν {\displaystyle \nu } is the multiplicative function given by ν ( p n ) = { p − N p , p ∈ P , n = 1 0 , p = 2 , n ≥ 2 ν ( p ) ν ( p n − 1 ) − p ν ( p n − 2 ) , p ∈ P ∖ { 2 } , n ≥ 2 {\displaystyle \nu (p^{n})={\begin{cases}p-{\mathcal {N}}_{p},&p\in \mathbb {P} ,\,n=1\\[5mu]0,&p=2,\,n\geq 2\\[5mu]\nu (p)\nu (p^{n-1})-p\nu (p^{n-2}),&p\in \mathbb {P} \setminus \{2\},\,n\geq 2\end{cases}}} where N p {\displaystyle {\mathcal {N}}_{p}} is the number of solutions of the congruence a 3 − a ≡ b 2 ( mod p ) , p ∈ P {\displaystyle a^{3}-a\equiv b^{2}\,(\operatorname {mod} p),\quad p\in \mathbb {P} } in variables a , b {\displaystyle a,b} that are non-negative integers ( P {\displaystyle \mathbb {P} } is the set of all primes).
Equivalently, ν {\displaystyle \nu } is given by F ( τ ) = η ( 4 τ ) 2 η ( 8 τ ) 2 = ∑ n = 1 ∞ ν ( n ) q n , q = e 2 π i τ {\displaystyle F(\tau )=\eta (4\tau )^{2}\eta (8\tau )^{2}=\sum _{n=1}^{\infty }\nu (n)q^{n},\quad q=e^{2\pi i\tau }} where τ ∈ C {\displaystyle \tau \in \mathbb {C} } such that ℑ τ > 0 {\displaystyle \operatorname {\Im } \tau >0} and η {\displaystyle \eta } is the eta function .[26] [27] [28] The above result can be equivalently written as ∑ n = 1 ∞ ν ( n ) n e − 2 π n / 32 = ϖ 8 {\displaystyle \sum _{n=1}^{\infty }{\frac {\nu (n)}{n}}e^{-2\pi n/{\sqrt {32}}}={\frac {\varpi }{8}}} (the number 32 {\displaystyle 32} is the conductor of E {\displaystyle E} ) and also tells us that the BSD conjecture is true for the above E {\displaystyle E} .[29] The first few values of ν {\displaystyle \nu } are given by the following table; if 1 ≤ n ≤ 113 {\displaystyle 1\leq n\leq 113} such that n {\displaystyle n} doesn't appear in the table, then ν ( n ) = 0 {\displaystyle \nu (n)=0} : n ν ( n ) n ν ( n ) 1 1 53 14 5 − 2 61 − 10 9 − 3 65 − 12 13 6 73 − 6 17 2 81 9 25 − 1 85 − 4 29 − 10 89 10 37 − 2 97 18 41 10 101 − 2 45 6 109 6 49 − 7 113 − 14 {\displaystyle {\begin{array}{|c|c|c|c|}\hline n&\nu (n)&n&\nu (n)\\\hline 1&1&53&14\\\hline 5&-2&61&-10\\\hline 9&-3&65&-12\\\hline 13&6&73&-6\\\hline 17&2&81&9\\\hline 25&-1&85&-4\\\hline 29&-10&89&10\\\hline 37&-2&97&18\\\hline 41&10&101&-2\\\hline 45&6&109&6\\\hline 49&-7&113&-14\\\hline \end{array}}}
As a special value of other functions Let Δ {\displaystyle \Delta } be the minimal weight level 1 {\displaystyle 1} new form. Then[30] Δ ( i ) = 1 64 ( ϖ π ) 12 . {\displaystyle \Delta (i)={\frac {1}{64}}\left({\frac {\varpi }{\pi }}\right)^{12}.} The q {\displaystyle q} -coefficient of Δ {\displaystyle \Delta } is the Ramanujan tau function .
Series Viète's formula for π can be written:
2 π = 1 2 ⋅ 1 2 + 1 2 1 2 ⋅ 1 2 + 1 2 1 2 + 1 2 1 2 ⋯ {\displaystyle {\frac {2}{\pi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}}}\cdots }
An analogous formula for ϖ is:[31]
2 ϖ = 1 2 ⋅ 1 2 + 1 2 / 1 2 ⋅ 1 2 + 1 2 / 1 2 + 1 2 / 1 2 ⋯ {\displaystyle {\frac {2}{\varpi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\Bigg /}\!{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}}}\cdots }
The Wallis product for π is:
π 2 = ∏ n = 1 ∞ ( 1 + 1 n ) ( − 1 ) n + 1 = ∏ n = 1 ∞ ( 2 n 2 n − 1 ⋅ 2 n 2 n + 1 ) = ( 2 1 ⋅ 2 3 ) ( 4 3 ⋅ 4 5 ) ( 6 5 ⋅ 6 7 ) ⋯ {\displaystyle {\frac {\pi }{2}}=\prod _{n=1}^{\infty }\left(1+{\frac {1}{n}}\right)^{(-1)^{n+1}}=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\biggl (}{\frac {2}{1}}\cdot {\frac {2}{3}}{\biggr )}{\biggl (}{\frac {4}{3}}\cdot {\frac {4}{5}}{\biggr )}{\biggl (}{\frac {6}{5}}\cdot {\frac {6}{7}}{\biggr )}\cdots }
An analogous formula for ϖ is:[32]
ϖ 2 = ∏ n = 1 ∞ ( 1 + 1 2 n ) ( − 1 ) n + 1 = ∏ n = 1 ∞ ( 4 n − 1 4 n − 2 ⋅ 4 n 4 n + 1 ) = ( 3 2 ⋅ 4 5 ) ( 7 6 ⋅ 8 9 ) ( 11 10 ⋅ 12 13 ) ⋯ {\displaystyle {\frac {\varpi }{2}}=\prod _{n=1}^{\infty }\left(1+{\frac {1}{2n}}\right)^{(-1)^{n+1}}=\prod _{n=1}^{\infty }\left({\frac {4n-1}{4n-2}}\cdot {\frac {4n}{4n+1}}\right)={\biggl (}{\frac {3}{2}}\cdot {\frac {4}{5}}{\biggr )}{\biggl (}{\frac {7}{6}}\cdot {\frac {8}{9}}{\biggr )}{\biggl (}{\frac {11}{10}}\cdot {\frac {12}{13}}{\biggr )}\cdots }
A related result for Gauss's constant ( G = ϖ / π {\displaystyle G=\varpi /\pi } ) is:[33]
ϖ π = ∏ n = 1 ∞ ( 4 n − 1 4 n ⋅ 4 n + 2 4 n + 1 ) = ( 3 4 ⋅ 6 5 ) ( 7 8 ⋅ 10 9 ) ( 11 12 ⋅ 14 13 ) ⋯ {\displaystyle {\frac {\varpi }{\pi }}=\prod _{n=1}^{\infty }\left({\frac {4n-1}{4n}}\cdot {\frac {4n+2}{4n+1}}\right)={\biggl (}{\frac {3}{4}}\cdot {\frac {6}{5}}{\biggr )}{\biggl (}{\frac {7}{8}}\cdot {\frac {10}{9}}{\biggr )}{\biggl (}{\frac {11}{12}}\cdot {\frac {14}{13}}{\biggr )}\cdots }
An infinite series discovered by Gauss is:[34]
ϖ π = ∑ n = 0 ∞ ( − 1 ) n ∏ k = 1 n ( 2 k − 1 ) 2 ( 2 k ) 2 = 1 − 1 2 2 2 + 1 2 ⋅ 3 2 2 2 ⋅ 4 2 − 1 2 ⋅ 3 2 ⋅ 5 2 2 2 ⋅ 4 2 ⋅ 6 2 + ⋯ {\displaystyle {\frac {\varpi }{\pi }}=\sum _{n=0}^{\infty }(-1)^{n}\prod _{k=1}^{n}{\frac {(2k-1)^{2}}{(2k)^{2}}}=1-{\frac {1^{2}}{2^{2}}}+{\frac {1^{2}\cdot 3^{2}}{2^{2}\cdot 4^{2}}}-{\frac {1^{2}\cdot 3^{2}\cdot 5^{2}}{2^{2}\cdot 4^{2}\cdot 6^{2}}}+\cdots }
The Machin formula for π is 1 4 π = 4 arctan 1 5 − arctan 1 239 , {\textstyle {\tfrac {1}{4}}\pi =4\arctan {\tfrac {1}{5}}-\arctan {\tfrac {1}{239}},} and several similar formulas for π can be developed using trigonometric angle sum identities, e.g. Euler's formula 1 4 π = arctan 1 2 + arctan 1 3 {\textstyle {\tfrac {1}{4}}\pi =\arctan {\tfrac {1}{2}}+\arctan {\tfrac {1}{3}}} . Analogous formulas can be developed for ϖ , including the following found by Gauss: 1 2 ϖ = 2 arcsl 1 2 + arcsl 7 23 {\displaystyle {\tfrac {1}{2}}\varpi =2\operatorname {arcsl} {\tfrac {1}{2}}+\operatorname {arcsl} {\tfrac {7}{23}}} , where arcsl {\displaystyle \operatorname {arcsl} } is the lemniscate arcsine .[35]
The lemniscate constant can be rapidly computed by the series[36] [37]
ϖ = 2 − 1 / 2 π ( ∑ n ∈ Z e − π n 2 ) 2 = 2 1 / 4 π e − π / 12 ( ∑ n ∈ Z ( − 1 ) n e − π p n ) 2 {\displaystyle \varpi =2^{-1/2}\pi {\biggl (}\sum _{n\in \mathbb {Z} }e^{-\pi n^{2}}{\biggr )}^{2}=2^{1/4}\pi e^{-\pi /12}{\biggl (}\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi p_{n}}{\biggr )}^{2}} where p n = 1 2 ( 3 n 2 − n ) {\displaystyle p_{n}={\tfrac {1}{2}}(3n^{2}-n)} (these are the generalized pentagonal numbers ). Also[38]
∑ m , n ∈ Z e − 2 π ( m 2 + m n + n 2 ) = 1 + 3 ϖ 12 1 / 8 π . {\displaystyle \sum _{m,n\in \mathbb {Z} }e^{-2\pi (m^{2}+mn+n^{2})}={\sqrt {1+{\sqrt {3}}}}{\dfrac {\varpi }{12^{1/8}\pi }}.} In a spirit similar to that of the Basel problem ,
∑ z ∈ Z [ i ] ∖ { 0 } 1 z 4 = G 4 ( i ) = ϖ 4 15 {\displaystyle \sum _{z\in \mathbb {Z} [i]\setminus \{0\}}{\frac {1}{z^{4}}}=G_{4}(i)={\frac {\varpi ^{4}}{15}}} where Z [ i ] {\displaystyle \mathbb {Z} [i]} are the Gaussian integers and G 4 {\displaystyle G_{4}} is the Eisenstein series of weight 4 {\displaystyle 4} (see Lemniscate elliptic functions § Hurwitz numbers for a more general result).[39]
A related result is
∑ n = 1 ∞ σ 3 ( n ) e − 2 π n = ϖ 4 80 π 4 − 1 240 {\displaystyle \sum _{n=1}^{\infty }\sigma _{3}(n)e^{-2\pi n}={\frac {\varpi ^{4}}{80\pi ^{4}}}-{\frac {1}{240}}} where σ 3 {\displaystyle \sigma _{3}} is the sum of positive divisors function .[40]
In 1842, Malmsten found
β ′ ( 1 ) = ∑ n = 1 ∞ ( − 1 ) n + 1 log ( 2 n + 1 ) 2 n + 1 = π 4 ( γ + 2 log π ϖ 2 ) {\displaystyle \beta '(1)=\sum _{n=1}^{\infty }(-1)^{n+1}{\frac {\log(2n+1)}{2n+1}}={\frac {\pi }{4}}\left(\gamma +2\log {\frac {\pi }{\varpi {\sqrt {2}}}}\right)} where γ {\displaystyle \gamma } is Euler's constant and β ( s ) {\displaystyle \beta (s)} is the Dirichlet-Beta function.
The lemniscate constant is given by the rapidly converging series
ϖ = π 32 4 e − π 3 ( ∑ n = − ∞ ∞ ( − 1 ) n e − 2 n π ( 3 n + 1 ) ) 2 . {\displaystyle \varpi =\pi {\sqrt[{4}]{32}}e^{-{\frac {\pi }{3}}}{\biggl (}\sum _{n=-\infty }^{\infty }(-1)^{n}e^{-2n\pi (3n+1)}{\biggr )}^{2}.}
The constant is also given by the infinite product
ϖ = π ∏ m = 1 ∞ tanh 2 ( π m 2 ) . {\displaystyle \varpi =\pi \prod _{m=1}^{\infty }\tanh ^{2}\left({\frac {\pi m}{2}}\right).} Also[41]
∑ n = 0 ∞ ( − 1 ) n 6635520 n ( 4 n ) ! n ! 4 = 24 5 7 / 4 ϖ 2 π 2 . {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{6635520^{n}}}{\frac {(4n)!}{n!^{4}}}={\frac {24}{5^{7/4}}}{\frac {\varpi ^{2}}{\pi ^{2}}}.}
Continued fractions A (generalized) continued fraction for π is π 2 = 1 + 1 1 + 1 ⋅ 2 1 + 2 ⋅ 3 1 + 3 ⋅ 4 1 + ⋱ {\displaystyle {\frac {\pi }{2}}=1+{\cfrac {1}{1+{\cfrac {1\cdot 2}{1+{\cfrac {2\cdot 3}{1+{\cfrac {3\cdot 4}{1+\ddots }}}}}}}}} An analogous formula for ϖ is[10] ϖ 2 = 1 + 1 2 + 2 ⋅ 3 2 + 4 ⋅ 5 2 + 6 ⋅ 7 2 + ⋱ {\displaystyle {\frac {\varpi }{2}}=1+{\cfrac {1}{2+{\cfrac {2\cdot 3}{2+{\cfrac {4\cdot 5}{2+{\cfrac {6\cdot 7}{2+\ddots }}}}}}}}}
Define Brouncker 's continued fraction by[42] b ( s ) = s + 1 2 2 s + 3 2 2 s + 5 2 2 s + ⋱ , s > 0. {\displaystyle b(s)=s+{\cfrac {1^{2}}{2s+{\cfrac {3^{2}}{2s+{\cfrac {5^{2}}{2s+\ddots }}}}}},\quad s>0.} Let n ≥ 0 {\displaystyle n\geq 0} except for the first equality where n ≥ 1 {\displaystyle n\geq 1} . Then[43] [44] b ( 4 n ) = ( 4 n + 1 ) ∏ k = 1 n ( 4 k − 1 ) 2 ( 4 k − 3 ) ( 4 k + 1 ) π ϖ 2 b ( 4 n + 1 ) = ( 2 n + 1 ) ∏ k = 1 n ( 2 k ) 2 ( 2 k − 1 ) ( 2 k + 1 ) 4 π b ( 4 n + 2 ) = ( 4 n + 1 ) ∏ k = 1 n ( 4 k − 3 ) ( 4 k + 1 ) ( 4 k − 1 ) 2 ϖ 2 π b ( 4 n + 3 ) = ( 2 n + 1 ) ∏ k = 1 n ( 2 k − 1 ) ( 2 k + 1 ) ( 2 k ) 2 π . {\displaystyle {\begin{aligned}b(4n)&=(4n+1)\prod _{k=1}^{n}{\frac {(4k-1)^{2}}{(4k-3)(4k+1)}}{\frac {\pi }{\varpi ^{2}}}\\b(4n+1)&=(2n+1)\prod _{k=1}^{n}{\frac {(2k)^{2}}{(2k-1)(2k+1)}}{\frac {4}{\pi }}\\b(4n+2)&=(4n+1)\prod _{k=1}^{n}{\frac {(4k-3)(4k+1)}{(4k-1)^{2}}}{\frac {\varpi ^{2}}{\pi }}\\b(4n+3)&=(2n+1)\prod _{k=1}^{n}{\frac {(2k-1)(2k+1)}{(2k)^{2}}}\,\pi .\end{aligned}}} For example, b ( 1 ) = 4 π , b ( 2 ) = ϖ 2 π , b ( 3 ) = π , b ( 4 ) = 9 π ϖ 2 . {\displaystyle {\begin{aligned}b(1)&={\frac {4}{\pi }},&b(2)&={\frac {\varpi ^{2}}{\pi }},&b(3)&=\pi ,&b(4)&={\frac {9\pi }{\varpi ^{2}}}.\end{aligned}}}
In fact, the values of b ( 1 ) {\displaystyle b(1)} and b ( 2 ) {\displaystyle b(2)} , coupled with the functional equation b ( s + 2 ) = ( s + 1 ) 2 b ( s ) , {\displaystyle b(s+2)={\frac {(s+1)^{2}}{b(s)}},} determine the values of b ( n ) {\displaystyle b(n)} for all n {\displaystyle n} .
Simple continued fractions Simple continued fractions for the lemniscate constant and related constants include[45] [46] ϖ = [ 2 , 1 , 1 , 1 , 1 , 1 , 4 , 1 , 2 , … ] , 2 ϖ = [ 5 , 4 , 10 , 2 , 1 , 2 , 3 , 29 , … ] , ϖ 2 = [ 1 , 3 , 4 , 1 , 1 , 1 , 5 , 2 , … ] , ϖ π = [ 0 , 1 , 5 , 21 , 3 , 4 , 14 , … ] . {\displaystyle {\begin{aligned}\varpi &=[2,1,1,1,1,1,4,1,2,\ldots ],\\[8mu]2\varpi &=[5,4,10,2,1,2,3,29,\ldots ],\\[5mu]{\frac {\varpi }{2}}&=[1,3,4,1,1,1,5,2,\ldots ],\\[2mu]{\frac {\varpi }{\pi }}&=[0,1,5,21,3,4,14,\ldots ].\end{aligned}}}
Integrals A geometric representation of ϖ / 2 {\displaystyle \varpi /2} and ϖ / 2 {\displaystyle \varpi /{\sqrt {2}}} The lemniscate constant ϖ is related to the area under the curve x 4 + y 4 = 1 {\displaystyle x^{4}+y^{4}=1} . Defining π n := B ( 1 n , 1 n ) {\displaystyle \pi _{n}\mathrel {:=} \mathrm {B} {\bigl (}{\tfrac {1}{n}},{\tfrac {1}{n}}{\bigr )}} , twice the area in the positive quadrant under the curve x n + y n = 1 {\displaystyle x^{n}+y^{n}=1} is 2 ∫ 0 1 1 − x n n d x = 1 n π n . {\textstyle 2\int _{0}^{1}{\sqrt[{n}]{1-x^{n}}}\mathop {\mathrm {d} x} ={\tfrac {1}{n}}\pi _{n}.} In the quartic case, 1 4 π 4 = 1 2 ϖ . {\displaystyle {\tfrac {1}{4}}\pi _{4}={\tfrac {1}{\sqrt {2}}}\varpi .}
In 1842, Malmsten discovered that[47]
∫ 0 1 log ( − log x ) 1 + x 2 d x = π 2 log π ϖ 2 . {\displaystyle \int _{0}^{1}{\frac {\log(-\log x)}{1+x^{2}}}\,dx={\frac {\pi }{2}}\log {\frac {\pi }{\varpi {\sqrt {2}}}}.}
Furthermore, ∫ 0 ∞ tanh x x e − x d x = log ϖ 2 π {\displaystyle \int _{0}^{\infty }{\frac {\tanh x}{x}}e^{-x}\,dx=\log {\frac {\varpi ^{2}}{\pi }}}
and[48]
∫ 0 ∞ e − x 4 d x = 2 ϖ 2 π 4 , analogous to ∫ 0 ∞ e − x 2 d x = π 2 , {\displaystyle \int _{0}^{\infty }e^{-x^{4}}\,dx={\frac {\sqrt {2\varpi {\sqrt {2\pi }}}}{4}},\quad {\text{analogous to}}\,\int _{0}^{\infty }e^{-x^{2}}\,dx={\frac {\sqrt {\pi }}{2}},} a form of Gaussian integral .
The lemniscate constant appears in the evaluation of the integrals
π ϖ = ∫ 0 π 2 sin ( x ) d x = ∫ 0 π 2 cos ( x ) d x {\displaystyle {\frac {\pi }{\varpi }}=\int _{0}^{\frac {\pi }{2}}{\sqrt {\sin(x)}}\,dx=\int _{0}^{\frac {\pi }{2}}{\sqrt {\cos(x)}}\,dx}
ϖ π = ∫ 0 ∞ d x cosh ( π x ) {\displaystyle {\frac {\varpi }{\pi }}=\int _{0}^{\infty }{\frac {dx}{\sqrt {\cosh(\pi x)}}}}
John Todd's lemniscate constants are defined by integrals:[9]
A = ∫ 0 1 d x 1 − x 4 {\displaystyle A=\int _{0}^{1}{\frac {dx}{\sqrt {1-x^{4}}}}}
B = ∫ 0 1 x 2 d x 1 − x 4 {\displaystyle B=\int _{0}^{1}{\frac {x^{2}\,dx}{\sqrt {1-x^{4}}}}}
Circumference of an ellipse The lemniscate constant satisfies the equation
π ϖ = 2 ∫ 0 1 x 2 d x 1 − x 4 {\displaystyle {\frac {\pi }{\varpi }}=2\int _{0}^{1}{\frac {x^{2}\,dx}{\sqrt {1-x^{4}}}}}
Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)[50]
arc length ⋅ height = A ⋅ B = ∫ 0 1 d x 1 − x 4 ⋅ ∫ 0 1 x 2 d x 1 − x 4 = ϖ 2 ⋅ π 2 ϖ = π 4 {\displaystyle {\textrm {arc}}\ {\textrm {length}}\cdot {\textrm {height}}=A\cdot B=\int _{0}^{1}{\frac {\mathrm {d} x}{\sqrt {1-x^{4}}}}\cdot \int _{0}^{1}{\frac {x^{2}\mathop {\mathrm {d} x} }{\sqrt {1-x^{4}}}}={\frac {\varpi }{2}}\cdot {\frac {\pi }{2\varpi }}={\frac {\pi }{4}}}
Now considering the circumference C {\displaystyle C} of the ellipse with axes 2 {\displaystyle {\sqrt {2}}} and 1 {\displaystyle 1} , satisfying 2 x 2 + 4 y 2 = 1 {\displaystyle 2x^{2}+4y^{2}=1} , Stirling noted that
C 2 = ∫ 0 1 d x 1 − x 4 + ∫ 0 1 x 2 d x 1 − x 4 {\displaystyle {\frac {C}{2}}=\int _{0}^{1}{\frac {dx}{\sqrt {1-x^{4}}}}+\int _{0}^{1}{\frac {x^{2}\,dx}{\sqrt {1-x^{4}}}}}
Hence the full circumference is
C = π ϖ + ϖ = 3.820197789 … {\displaystyle C={\frac {\pi }{\varpi }}+\varpi =3.820197789\ldots }
This is also the arc length of the sine curve on half a period:[52]
C = ∫ 0 π 1 + cos 2 ( x ) d x {\displaystyle C=\int _{0}^{\pi }{\sqrt {1+\cos ^{2}(x)}}\,dx}
Other limits Analogously to 2 π = lim n → ∞ | ( 2 n ) ! B 2 n | 1 2 n {\displaystyle 2\pi =\lim _{n\to \infty }\left|{\frac {(2n)!}{\mathrm {B} _{2n}}}\right|^{\frac {1}{2n}}} where B n {\displaystyle \mathrm {B} _{n}} are Bernoulli numbers , we have 2 ϖ = lim n → ∞ ( ( 4 n ) ! H 4 n ) 1 4 n {\displaystyle 2\varpi =\lim _{n\to \infty }\left({\frac {(4n)!}{\mathrm {H} _{4n}}}\right)^{\frac {1}{4n}}} where H n {\displaystyle \mathrm {H} _{n}} are Hurwitz numbers .
Notes ^ See:Gauss, C. F. (1866). Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen. p. 404Cox 1984, p. 281 Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi . American Mathematical Society. ISBN 0-8218-3246-8 . p. 199Bottazzini, Umberto ; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory . Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4 . p. 57Arakawa, Tsuneo; Ibukiyama, Tomoyoshi; Kaneko, Masanobu (2014). Bernoulli Numbers and Zeta Functions . Springer. ISBN 978-4-431-54918-5 . p. 203 ^ See:Finch 2003, p. 420 Kobayashi, Hiroyuki; Takeuchi, Shingo (2019), "Applications of generalized trigonometric functions with two parameters", Communications on Pure & Applied Analysis , 18 (3): 1509–1521, arXiv :1903.07407 , doi:10.3934/cpaa.2019072, S2CID 102487670 Asai, Tetsuya (2007), Elliptic Gauss Sums and Hecke L-values at s=1 , arXiv :0707.3711 "A062539 - Oeis". ^ "A064853 - Oeis". ^ "Lemniscate Constant". ^ "Records set by y-cruncher". numberworld.org . Retrieved 2024-08-20 . ^ "A014549 - Oeis". ^ Neither of these proofs was rigorous from the modern point of view. See Cox 1984, p. 281 ^ a b c Todd, John (January 1975). "The lemniscate constants". Communications of the ACM . 18 (1): 14–19. doi:10.1145/360569.360580 . S2CID 85873. ^ a b "A085565 - Oeis". and "A076390 - Oeis". ^ Carlson, B. C. (2010), "Elliptic Integrals", in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .^ In particular, Siegel proved that if G 4 ( ω 1 , ω 2 ) {\displaystyle \operatorname {G} _{4}(\omega _{1},\omega _{2})} and G 6 ( ω 1 , ω 2 ) {\displaystyle \operatorname {G} _{6}(\omega _{1},\omega _{2})} with Im ( ω 2 / ω 1 ) > 0 {\displaystyle \operatorname {Im} (\omega _{2}/\omega _{1})>0} are algebraic, then ω 1 {\displaystyle \omega _{1}} or ω 2 {\displaystyle \omega _{2}} is transcendental. Here, G 4 {\displaystyle \operatorname {G} _{4}} and G 6 {\displaystyle \operatorname {G} _{6}} are Eisenstein series . The fact that ϖ {\displaystyle \varpi } is transcendental follows from G 4 ( ϖ , ϖ i ) = 1 / 15 {\displaystyle \operatorname {G} _{4}(\varpi ,\varpi i)=1/15} and G 6 ( ϖ , ϖ i ) = 0. {\displaystyle \operatorname {G} _{6}(\varpi ,\varpi i)=0.}
Apostol, T. M. (1990). Modular Functions and Dirichlet Series in Number Theory (Second ed.). Springer. p. 12. ISBN 0-387-97127-0 .
Siegel, C. L. (1932). "Über die Perioden elliptischer Funktionen". Journal für die reine und angewandte Mathematik (in German). 167 : 62–69. ^ In particular, Schneider proved that the beta function B ( a , b ) {\displaystyle \mathrm {B} (a,b)} is transcendental for all a , b ∈ Q ∖ Z {\displaystyle a,b\in \mathbb {Q} \setminus \mathbb {Z} } such that a + b ∉ Z 0 − {\displaystyle a+b\notin \mathbb {Z} _{0}^{-}} . The fact that ϖ {\displaystyle \varpi } is transcendental follows from ϖ = 1 2 B ( 1 4 , 1 2 ) {\displaystyle \varpi ={\tfrac {1}{2}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{2}}{\bigr )}} and similarly for B and G from B ( 1 2 , 3 4 ) . {\displaystyle \mathrm {B} {\bigl (}{\tfrac {1}{2}},{\tfrac {3}{4}}{\bigr )}.}
Schneider, Theodor (1941). "Zur Theorie der Abelschen Funktionen und Integrale". Journal für die reine und angewandte Mathematik . 183 (19): 110–128. doi:10.1515/crll.1941.183.110. S2CID 118624331. ^ G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis , Notices of the AMS 22, 1975, p. A-486 ^ G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers , American Mathematical Society, 1984, p. 6 ^ In fact, π = 2 2 M 3 ( 1 , 1 2 ) M ′ ( 1 , 1 2 ) = 1 G 3 M ′ ( 1 , 1 2 ) . {\displaystyle \pi =2{\sqrt {2}}{\frac {M^{3}\left(1,{\frac {1}{\sqrt {2}}}\right)}{M'\left(1,{\frac {1}{\sqrt {2}}}\right)}}={\frac {1}{G^{3}M'\left(1,{\frac {1}{\sqrt {2}}}\right)}}.}
Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7 . p. 45 ^ Nesterenko, Y. V.; Philippon, P. (2001). Introduction to Algebraic Independence Theory . Springer. p. 27. ISBN 3-540-41496-7 . ^ See:Cox 1984, p. 281 Finch 2003, pp. 420–422 Schappacher, Norbert (1997). "Some milestones of lemniscatomy" (PDF) . In Sertöz, S. (ed.). Algebraic Geometry (Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey). Marcel Dekker. pp. 257–290. ^ "A113847 - Oeis". ^ Cremona, J. E. (1997). Algorithms for Modular Elliptic Curves (2nd ed.). Cambridge University Press . ISBN 0521598206 . p. 31, formula (2.8.10)^ In fact, the series ∑ n = 1 ∞ ν ( n ) n s {\textstyle \sum _{n=1}^{\infty }{\frac {\nu (n)}{n^{s}}}} converges for ℜ s > 5 / 6 {\displaystyle \operatorname {\Re } s>5/6} . ^ Murty, Vijaya Kumar (1995). Seminar on Fermat's Last Theorem . American Mathematical Society . p. 16. ISBN 9780821803134 .^ Cohen, Henri (1993). A Course in Computational Algebraic Number Theory . Springer-Verlag. p. 382–406. ISBN 978-3-642-08142-2 .^ "Elliptic curve with LMFDB label 32.a3 (Cremona label 32a2)". The L-functions and modular forms database . ^ The function F {\displaystyle F} is the unique weight 2 {\displaystyle 2} level 32 {\displaystyle 32} new form and it satisfies the functional equation F ( − 1 τ ) = − τ 2 32 F ( τ 1 32 ) . {\displaystyle F\left(-{\frac {1}{\tau }}\right)=-{\frac {\tau ^{2}}{32}}F\left({\frac {\tau {\vphantom {1}}}{32}}\right).} ^ The ν {\displaystyle \nu } function is closely related to the ξ {\displaystyle \xi } function which is the multiplicative function defined by ξ ( p n ) = { N p ′ , p ∈ P , n = 1 ξ ( p n − 1 ) + χ ( p ) n , p ∈ P , n ≥ 2 {\displaystyle \xi (p^{n})={\begin{cases}{\mathcal {N}}_{p}',&p\in \mathbb {P} ,\,n=1\\[5mu]\xi (p^{n-1})+\chi (p)^{n},&p\in \mathbb {P} ,\,n\geq 2\end{cases}}} where N p ′ {\displaystyle {\mathcal {N}}_{p}'} is the number of solutions of the equation a 2 + b 2 = p , p ∈ P {\displaystyle a^{2}+b^{2}=p,\quad p\in \mathbb {P} } in variables a , b {\displaystyle a,b} that are non-negative integers (see Fermat's theorem on sums of two squares ) and χ {\displaystyle \chi } is the Dirichlet character from the Leibniz formula for π; also ∑ d | n χ ( d ) = ξ ( n ) {\displaystyle \sum _{d|n}\chi (d)=\xi (n)} for any positive integer n {\displaystyle n} where the sum extends only over positive divisors; the relation between ν {\displaystyle \nu } and ξ {\displaystyle \xi } is ∑ k = 0 n ( − 1 ) k ξ ( 4 k + 1 ) ξ ( 4 n − 4 k + 1 ) = ν ( 2 n + 1 ) {\displaystyle \sum _{k=0}^{n}(-1)^{k}\xi (4k+1)\xi (4n-4k+1)=\nu (2n+1)} where n {\displaystyle n} is any non-negative integer. ^ The ν {\displaystyle \nu } function also appears in ∑ z ∈ G ; z z ¯ = n z = ν ( n ) {\displaystyle \sum _{z\in \mathbb {G} ;\,z{\overline {z}}=n}z=\nu (n)} where n {\displaystyle n} is any positive integer and G {\displaystyle \operatorname {\mathbb {G} } } is the set of all Gaussian integers of the form ( − 1 ) a ± b − 1 2 ( a ± b i ) {\displaystyle (-1)^{\frac {a\pm b-1}{2}}(a\pm bi)} where a {\displaystyle a} is odd and b {\displaystyle b} is even. The ξ {\displaystyle \xi } function from the previous note satisfies | { z : z ∈ G ∧ z z ¯ = n } | = ξ ( n ) {\displaystyle \left|\{z:z\in \mathbb {G} \land z{\overline {z}}=n\}\right|=\xi (n)} where n {\displaystyle n} is positive odd. ^ Rubin, Karl (1987). "Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication". Inventiones mathematicae . 89 : 528. ^ "Newform orbit 1.12.a.a". The L-functions and modular forms database . ^ Levin (2006) ^ Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity. ^ Hyde, Trevor (2014). "A Wallis product on clovers" (PDF) . The American Mathematical Monthly . 121 (3): 237–243. doi:10.4169/amer.math.monthly.121.03.237. S2CID 34819500. ^ Bottazzini, Umberto ; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory . Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4 . p. 60^ Todd (1975) ^ Cox 1984, p. 307, eq. 2.21 for the first equality. The second equality can be proved by using the pentagonal number theorem . ^ Berndt, Bruce C. (1998). Ramanujan's Notebooks Part V . Springer. ISBN 978-1-4612-7221-2 . p. 326^ This formula can be proved by hypergeometric inversion : Let a ( q ) = ∑ m , n ∈ Z q m 2 + m n + n 2 {\displaystyle \operatorname {a} (q)=\sum _{m,n\in \mathbb {Z} }q^{m^{2}+mn+n^{2}}} where q ∈ C {\displaystyle q\in \mathbb {C} } with | q | < 1 {\displaystyle \left|q\right|<1} . Then a ( q ) = 2 F 1 ( 1 3 , 2 3 , 1 , z ) {\displaystyle \operatorname {a} (q)={}_{2}F_{1}\left({\frac {1}{3}},{\frac {2}{3}},1,z\right)} where q = exp ( − 2 π 3 2 F 1 ( 1 / 3 , 2 / 3 , 1 , 1 − z ) 2 F 1 ( 1 / 3 , 2 / 3 , 1 , z ) ) {\displaystyle q=\exp \left(-{\frac {2\pi }{\sqrt {3}}}{\frac {{}_{2}F_{1}(1/3,2/3,1,1-z)}{{}_{2}F_{1}(1/3,2/3,1,z)}}\right)} where z ∈ C ∖ { 0 , 1 } {\displaystyle z\in \mathbb {C} \setminus \{0,1\}} . The formula in question follows from setting z = 1 4 ( 3 3 − 5 ) {\textstyle z={\tfrac {1}{4}}{\bigl (}3{\sqrt {3}}-5{\bigr )}} . ^ Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi . American Mathematical Society. ISBN 0-8218-3246-8 . p. 232^ Garrett, Paul. "Level-one elliptic modular forms" (PDF) . University of Minnesota . p. 11—13^ The formula follows from the hypergeometric transformation 3 F 2 ( 1 4 , 1 2 , 3 4 , 1 , 1 , 16 z ( 1 − z ) 2 ( 1 + z ) 4 ) = ( 1 + z ) 2 F 1 ( 1 2 , 1 2 , 1 , z ) 2 {\displaystyle {}_{3}F_{2}\left({\frac {1}{4}},{\frac {1}{2}},{\frac {3}{4}},1,1,16z{\frac {(1-z)^{2}}{(1+z)^{4}}}\right)=(1+z)\,{}_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}},1,z\right)^{2}} where z = λ ( 1 + 5 i ) {\displaystyle z=\lambda (1+5i)} and λ {\displaystyle \lambda } is the modular lambda function . ^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1 . p. 140 (eq. 3.34), p. 153. There's an error on p. 153: 4 [ Γ ( 3 + s / 4 ) / Γ ( 1 + s / 4 ) ] 2 {\displaystyle 4[\Gamma (3+s/4)/\Gamma (1+s/4)]^{2}} should be 4 [ Γ ( ( 3 + s ) / 4 ) / Γ ( ( 1 + s ) / 4 ) ] 2 {\displaystyle 4[\Gamma ((3+s)/4)/\Gamma ((1+s)/4)]^{2}} .^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1 . p. 146, 155^ Perron, Oskar (1957). Die Lehre von den Kettenbrüchen: Band II (in German) (Third ed.). B. G. Teubner. p. 36, eq. 24^ "A062540 - OEIS". oeis.org . Retrieved 2022-09-14 . ^ "A053002 - OEIS". oeis.org . ^ Blagouchine, Iaroslav V. (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal . 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. S2CID 120943474. ^ "A068467 - Oeis". ^ Levien (2008) ^ Adlaj, Semjon (2012). "An Eloquent Formula for the Perimeter of an Ellipse" (PDF) . American Mathematical Society . p. 1097. One might also observe that the length of the "sine" curve over half a period, that is, the length of the graph of the function sin(t) from the point where t = 0 to the point where t = π , is 2 l ( 1 / 2 ) = L + M {\displaystyle {\sqrt {2}}l(1/{\sqrt {2}})=L+M} . In this paper M = 1 / G = π / ϖ {\displaystyle M=1/G=\pi /\varpi } and L = π / M = G π = ϖ {\displaystyle L=\pi /M=G\pi =\varpi } .
References Weisstein, Eric W. "Lemniscate Constant". MathWorld .Sequences A014549, A053002, and A062539 in OEIS Cox, David A. (January 1984). "The Arithmetic-Geometric Mean of Gauss" (PDF) . L'Enseignement Mathématique . 30 (2): 275–330. doi:10.5169/seals-53831. Retrieved 25 June 2022 . Finch, Steven R. (18 August 2003). Mathematical Constants. Cambridge University Press. pp. 420–422. ISBN 978-0-521-81805-6 .
External links "Gauss's constant and where it occurs". www.johndcook.com . 2021-10-17.