stringtranslate.com

Conjunto multiplicativamente cerrado

En álgebra abstracta , un conjunto multiplicativamente cerrado (o conjunto multiplicativo ) es un subconjunto S de un anillo R tal que se cumplen las dos condiciones siguientes: [1] [2]

En otras palabras, S es cerrado tomando productos finitos, incluido el producto vacío 1. [3] De manera equivalente, un conjunto multiplicativo es un submonoide del monoide multiplicativo de un anillo.

Los conjuntos multiplicativos son importantes especialmente en el álgebra conmutativa , donde se utilizan para construir localizaciones de anillos conmutativos.

Un subconjunto S de un anillo R se llama saturado si es cerrado tomando divisores : es decir, siempre que un producto xy está en S , los elementos x e y también están en S.

Ejemplos

Algunos ejemplos de conjuntos multiplicativos son:

Propiedades

Véase también

Notas

  1. ^ Atiyah y Macdonald, pag. 36.
  2. ^ Lang, pág. 107.
  3. ^ Eisenbud, pág. 59.
  4. ^ Kaplansky, pág. 2, Teorema 2.

Referencias