stringtranslate.com

Cilindro de buceo

Un cilindro de buceo o cilindro de gas de buceo es un cilindro de gas utilizado para almacenar y transportar gas a alta presión utilizado en operaciones de buceo . Este puede ser gas respirable utilizado con un equipo de buceo , en cuyo caso el cilindro también puede denominarse cilindro de buceo , tanque de buceo o tanque de buceo . Cuando se utiliza para un suministro de gas de emergencia para buceo con suministro desde la superficie o buceo con escafandra autónoma, puede denominarse cilindro de rescate o botella de rescate . También puede usarse para buceo con suministro desde la superficie o como gas de descompresión . Un cilindro de buceo también puede usarse para suministrar gas de inflado para un traje seco o un compensador de flotabilidad. Los cilindros proporcionan gas al buceador a través de la válvula de demanda de un regulador de buceo o el circuito de respiración de un rebreather de buceo .

Los cilindros de buceo suelen estar fabricados con aleaciones de aluminio o acero y, cuando se utilizan en un equipo de buceo, normalmente están equipados con uno de los dos tipos comunes de válvula de cilindro para llenarlo y conectarlo al regulador. Se pueden proporcionar otros accesorios como colectores , bandas para cilindros, redes protectoras y botas y asas de transporte. El buceador puede utilizar varias configuraciones de arnés para llevar uno o más cilindros mientras bucea, según la aplicación. Los cilindros utilizados para el buceo suelen tener un volumen interno (conocido como capacidad de agua) de entre 3 y 18 litros (0,11 y 0,64 pies cúbicos) y una presión máxima de trabajo de 184 a 300 bares (2670 a 4350  psi ). Los cilindros también están disponibles en tamaños más pequeños, como 0,5, 1,5 y 2 litros, sin embargo, estos se utilizan normalmente para fines como el inflado de boyas de señalización de superficie , trajes secos y compensadores de flotabilidad en lugar de respirar. Los buceadores pueden bucear con un solo cilindro, un par de cilindros similares o un cilindro principal y un cilindro más pequeño , que se llevan en la espalda o se sujetan al arnés en el costado. Los cilindros emparejados pueden conectarse entre sí o de forma independiente. En el buceo técnico , pueden necesitarse más de dos cilindros.

Cuando se presuriza, el gas se comprime hasta varios cientos de veces la presión atmosférica. La selección de un conjunto adecuado de cilindros de buceo para una operación de buceo se basa en la cantidad de gas necesaria para completar la inmersión de forma segura. Los cilindros de buceo suelen estar llenos de aire, pero como los componentes principales del aire pueden causar problemas cuando se respiran bajo el agua a una presión ambiental más alta, los buceadores pueden optar por respirar desde cilindros llenos de mezclas de gases distintos del aire. Muchas jurisdicciones tienen regulaciones que rigen el llenado, el registro del contenido y el etiquetado de los cilindros de buceo. Las pruebas e inspecciones periódicas de los cilindros de buceo suelen ser obligatorias para garantizar la seguridad de los operadores de las estaciones de llenado. Los cilindros de buceo presurizados se consideran mercancías peligrosas para el transporte comercial, y también pueden aplicarse normas regionales e internacionales para la coloración y el etiquetado.

Terminología

El término "cilindro de buceo" suele ser utilizado por ingenieros de equipos de gas, fabricantes, profesionales de soporte y buceadores que hablan inglés británico . "Tanque de buceo" o "tanque de buceo" se utiliza más a menudo de forma coloquial por personas no profesionales y hablantes nativos de inglés americano . El término " tanque de oxígeno " es comúnmente utilizado por personas que no bucean; sin embargo, este es un nombre inapropiado ya que estos cilindros suelen contener aire respirable (atmosférico comprimido) o una mezcla de aire enriquecido con oxígeno . Rara vez contienen oxígeno puro, excepto cuando se utilizan para buceo con rebreather , paradas de descompresión poco profundas en buceo técnico o para terapia de recompresión de oxígeno en el agua . Respirar oxígeno puro a profundidades superiores a 6 metros (20 pies) puede provocar toxicidad por oxígeno . [1]

Los cilindros de buceo también se conocen como botellas o frascos, generalmente precedidos por la palabra scuba, diving, air, [2] o bailout. Los cilindros también pueden llamarse aqualungs, una marca comercial genérica derivada del equipo Aqua-lung fabricado por la empresa Aqua Lung/La Spirotechnique , [3] aunque eso se aplica más apropiadamente a un equipo de buceo de circuito abierto o un regulador de buceo de circuito abierto.

Los cilindros de buceo también pueden especificarse por su aplicación, como cilindros de rescate, cilindros de etapa, cilindros de descompresión (deco), cilindros de desmontaje lateral, cilindros pony, cilindros de inflado de trajes, etc. El mismo cilindro, montado de la misma manera, puede usarse como cilindro de rescate, cilindro de descompresión o cilindro de etapa. [4]

Regiones

Dos cilindros de acero de 12 litros conectados por un colector de aislamiento y dos bandas de tanque de acero inoxidable, con botas de tanque de plástico negro
Juego de dos cilindros de acero de 12 litros

El cilindro de buceo funcional consta de un recipiente a presión y una válvula de cilindro. Generalmente, hay uno o más accesorios opcionales según la aplicación específica.

El recipiente a presión

El recipiente a presión es un cilindro sin costuras normalmente hecho de aluminio extruido en frío o acero forjado . [5] Los cilindros compuestos de filamento enrollado se utilizan en aparatos de respiración contra incendios y equipos de primeros auxilios de oxígeno debido a su bajo peso, pero rara vez se utilizan para buceo, debido a su alta flotabilidad positiva . Ocasionalmente se utilizan cuando la portabilidad para acceder al sitio de buceo es crítica, como en el buceo en cuevas . [6] [7] Los cilindros compuestos certificados según ISO-11119-2 o ISO-11119-3 solo se pueden usar para aplicaciones submarinas si se fabrican de acuerdo con los requisitos para uso submarino y están marcados "UW". [8] El recipiente a presión comprende una sección cilíndrica de espesor de pared uniforme, con una base más gruesa en un extremo y un hombro abovedado con un cuello central para conectar una válvula de cilindro o colector en el otro extremo.

Ocasionalmente, se pueden utilizar otros materiales. El Inconel se ha utilizado para contenedores esféricos de gas de alta presión, compatibles con oxígeno, no magnéticos y altamente resistentes a la corrosión, para los rebreathers de gas mixto Mk-15 y Mk-16 de la Marina de los EE. UU. y algunos otros rebreathers militares.

Aluminio

Un cilindro de alquiler especialmente común que se proporciona en los centros de buceo tropicales es el "aluminio-S80", que es un diseño de cilindro de aluminio con un volumen interno de 0,39 pies cúbicos (11,0 L) clasificado para contener un volumen nominal de 80 pies cúbicos (2300 L) de gas a presión atmosférica a su presión de trabajo nominal de 3000 libras por pulgada cuadrada (207 bar). [9] Los cilindros de aluminio también se utilizan a menudo cuando los buceadores llevan muchos cilindros, como en el buceo técnico en agua que es lo suficientemente cálida como para que el traje de buceo no proporcione mucha flotabilidad, porque la mayor flotabilidad de los cilindros de aluminio reduce la cantidad de flotabilidad adicional que el buceador necesitaría para lograr una flotabilidad neutra. A veces también se prefieren cuando se llevan como cilindros de "montaje lateral" o "eslinga", ya que la flotabilidad casi neutra les permite colgar cómodamente a lo largo de los lados del cuerpo del buceador, sin alterar el equilibrio, y se pueden pasar a otro buceador o dejar caer desde el escenario con un efecto mínimo en la flotabilidad. La mayoría de los cilindros de aluminio tienen un fondo plano, lo que les permite permanecer en posición vertical sobre una superficie nivelada, pero algunos se fabricaron con fondos abovedados. Cuando están en uso, la válvula del cilindro y el regulador agregan masa a la parte superior del cilindro, por lo que la base tiende a ser relativamente flotante, y los cilindros de aluminio de caída tienden a descansar en el fondo en una posición invertida si la flotabilidad es casi neutra. Por la misma razón, tienden a colgar en un ángulo cuando se transportan como cilindros de eslinga a menos que estén restringidos o lastrados.

Las aleaciones de aluminio utilizadas para los cilindros de buceo son 6061 y 6351. La aleación 6351 está sujeta a agrietamiento por carga sostenida y los cilindros fabricados con esta aleación deben probarse periódicamente con corrientes parásitas de acuerdo con la legislación nacional y las recomendaciones del fabricante. [10] [11] La aleación 6351 ha sido reemplazada para la fabricación nueva, pero muchos cilindros antiguos todavía están en servicio y siguen siendo legales y se consideran seguros si pasan las pruebas periódicas hidrostáticas, visuales y de corrientes parásitas requeridas por la reglamentación y según lo especificado por el fabricante. El número de cilindros que han fallado catastróficamente es del orden de 50 de los aproximadamente 50 millones fabricados. Un número mayor no ha pasado la prueba de corrientes parásitas ni la inspección visual de las roscas del cuello, o han tenido fugas y se han retirado del servicio sin dañar a nadie. [12]

Los cilindros de aluminio se fabrican generalmente mediante extrusión en frío de palanquillas de aluminio en un proceso que primero prensa las paredes y la base, luego recorta el borde superior de las paredes del cilindro, seguido de la formación de prensa del hombro y el cuello. El proceso estructural final es el mecanizado de la superficie exterior del cuello, perforando y cortando las roscas del cuello y la ranura de la junta tórica . Luego, el cilindro se trata térmicamente, se prueba y se estampa con las marcas permanentes requeridas. [13] Los cilindros de buceo de aluminio comúnmente tienen bases planas, lo que les permite mantenerse en posición vertical sobre superficies horizontales, y que son relativamente gruesas para permitir un tratamiento brusco y un desgaste considerable. Esto los hace más pesados ​​de lo que deberían ser para mayor resistencia, pero el peso adicional en la base también ayuda a mantener el centro de gravedad bajo, lo que brinda un mejor equilibrio en el agua y reduce el exceso de flotabilidad.

Acero

Animación que muestra dos etapas de embutición profunda de una placa de acero para formar una copa, y una copa similar para formar un cilindro de buceo en blanco con fondo abovedado.

En el buceo en aguas frías, donde una persona que lleva un traje de buceo con aislamiento térmico de alta flotabilidad tiene un gran exceso de flotabilidad, a menudo se utilizan cilindros de acero porque son más densos que los cilindros de aluminio. También suelen tener una masa menor que los cilindros de aluminio con la misma capacidad de gas, debido a una resistencia del material considerablemente mayor , por lo que el uso de cilindros de acero puede dar como resultado un cilindro más ligero y menos lastre necesario para la misma capacidad de gas, un ahorro doble en el peso seco total transportado por el buceador. [14] [15] Los cilindros de acero son más susceptibles que el aluminio a la corrosión externa, particularmente en agua de mar, y pueden galvanizarse o recubrirse con pinturas de barrera contra la corrosión para resistir el daño por corrosión. No es difícil controlar la corrosión externa y reparar la pintura cuando se daña, y los cilindros de acero que se mantienen bien tienen una vida útil prolongada, a menudo más larga que los cilindros de aluminio, ya que no son susceptibles a daños por fatiga cuando se llenan dentro de sus límites de presión de trabajo seguros.

Los cilindros de acero se fabrican con fondos abovedados (convexos) y cóncavos (cóncavos). El perfil cóncavo les permite permanecer en posición vertical sobre una superficie horizontal y es la forma estándar de los cilindros industriales. Los cilindros utilizados para el suministro de gas de emergencia en las campanas de buceo suelen tener esta forma y, por lo general, tienen una capacidad de agua de unos 50 litros ("J"). Los fondos abovedados proporcionan un mayor volumen para la misma masa del cilindro y son el estándar para los cilindros de buceo de hasta 18 litros de capacidad de agua, aunque se han comercializado algunos cilindros con fondo cóncavo para buceo. [16] [17]

Las aleaciones de acero utilizadas para la fabricación de cilindros de buceo están autorizadas por la norma de fabricación. Por ejemplo, la norma estadounidense DOT 3AA exige el uso de acero de hogar abierto, de oxígeno básico o eléctrico de calidad uniforme. Las aleaciones aprobadas incluyen 4130X, NE-8630, 9115, 9125, carbono-boro y manganeso intermedio, con componentes específicos, incluidos manganeso y carbono, y molibdeno, cromo, boro, níquel o circonio. [18]

Los cilindros de acero pueden fabricarse a partir de discos de chapa de acero, que se estiran en frío hasta obtener una forma de copa cilíndrica, en dos o tres etapas, y generalmente tienen una base abovedada si están destinados al mercado de buceo, por lo que no pueden sostenerse por sí solos. Después de formar la base y las paredes laterales, la parte superior del cilindro se recorta a la longitud adecuada, se calienta y se centrifuga en caliente para formar el hombro y cerrar el cuello. Este proceso espesa el material del hombro. El cilindro se trata térmicamente mediante temple y revenido para proporcionar la mejor resistencia y tenacidad. Los cilindros se mecanizan para proporcionar la rosca del cuello y el asiento de la junta tórica (si corresponde), luego se limpian químicamente o se granallan por dentro y por fuera para eliminar la cascarilla de laminación. Después de la inspección y la prueba hidrostática, se estampan con las marcas permanentes requeridas, seguido de un recubrimiento externo con una pintura de barrera contra la corrosión o galvanización por inmersión en caliente y una inspección final. [19]

Un método de producción alternativo es la extrusión hacia atrás de un tocho de acero calentado, similar al proceso de extrusión en frío para cilindros de aluminio, seguido de un estirado en caliente y un conformado de la base para reducir el espesor de la pared, y el recorte del borde superior en preparación para la formación del hombro y el cuello mediante hilado en caliente. Los demás procesos son muy similares para todos los métodos de producción. [20]

Cuello de cilindro

El cuello del cilindro es la parte del extremo que tiene forma de cilindro concéntrico estrecho y está roscado internamente para adaptarse a una válvula de cilindro. Existen varias normas para las roscas del cuello, entre ellas:

Los hilos paralelos se realizan según varios estándares:

Las roscas 3/4"NGS y 3/4"BSP son muy similares, tienen el mismo paso y un diámetro de paso que solo difiere en aproximadamente 0,2 mm (0,008 pulgadas), pero no son compatibles, ya que las formas de rosca son diferentes.

Todas las válvulas de rosca paralela están selladas mediante una junta tórica en la parte superior de la rosca del cuello que sella en un chaflán o escalón en el cuello del cilindro y contra la brida de la válvula.

Marcas de sellos permanentes

El hombro del cilindro lleva marcas de sello que proporcionan la información necesaria sobre el cilindro. [27]

Las marcas universalmente requeridas incluyen:

Es posible que las reglamentaciones nacionales exijan una variedad de otras marcas, o que estas sean opcionales. [27]

La válvula del cilindro

Partes superiores de dos cilindros que muestran reguladores conectados a través de conectores DIN y de horquilla
Reguladores con válvula DIN (izquierda) y válvula de horquilla (derecha)

El propósito de la válvula de cilindro o válvula de columna es controlar el flujo de gas hacia y desde el recipiente a presión y proporcionar una conexión con el regulador o la manguera de llenado. [5] Las válvulas de cilindro generalmente están mecanizadas a partir de latón y terminadas con una capa protectora y decorativa de cromado . [28] Un tubo de inmersión de metal o plástico o un tubo de respiración de válvula atornillado en la parte inferior de la válvula se extiende dentro del cilindro para reducir el riesgo de que los contaminantes líquidos o particulados del cilindro ingresen a los conductos de gas cuando el cilindro está invertido y bloqueen o atasquen el regulador. Algunos de estos tubos de inmersión tienen una abertura simple, pero algunos tienen un filtro integral. [29] [30]

Las válvulas de cilindro se clasifican según cuatro aspectos básicos: la especificación de la rosca, la conexión al regulador, la presión nominal [31] y otras características distintivas. Las normas relacionadas con las especificaciones y la fabricación de válvulas de cilindro incluyen la ISO 10297 y la Norma CGA V-9 para válvulas de cilindro de gas [32] . Las otras características distintivas incluyen la configuración de la salida, la orientación de la perilla de la válvula y el sentido de giro, [33] el número de salidas y válvulas (1 o 2), la forma del cuerpo de la válvula, [34] la presencia de una válvula de reserva, las conexiones del colector y la presencia de un dispositivo de alivio de sobrepresión de disco de ruptura [5] .

Las roscas de los cilindros pueden tener dos configuraciones básicas: rosca cónica y rosca paralela. [5] La especificación de la rosca de la válvula debe coincidir exactamente con la especificación de la rosca del cuello del cilindro. Las roscas del cuello que no coinciden correctamente pueden fallar bajo presión y tener consecuencias fatales. [35] [36] [37] [38] La clasificación de presión de la válvula debe ser compatible con la clasificación de presión del cilindro.

Las roscas paralelas son más tolerantes a la extracción y reinstalación repetidas de la válvula para inspección y prueba. [39] : s9 

Accesorios

Componentes adicionales para mayor comodidad, protección u otras funciones, no directamente necesarios para la función como recipiente a presión.

Colectores

Dos cilindros de acero de 12 litros con válvulas de salida DIN conectados por un colector con una válvula de aislamiento central.
Colector de aislamiento sellado con cara frontal en cilindros gemelos de acero de 12 L. Los discos de plástico son registros de la última inspección interna.

Un colector de cilindros es un tubo que conecta dos cilindros entre sí para que el contenido de ambos pueda suministrarse a uno o más reguladores. [40] [41] : 164, 165  Hay tres configuraciones de colector de uso común. El tipo más antiguo es un tubo con un conector en cada extremo que está conectado a la salida de la válvula del cilindro y una conexión de salida en el medio, a la que se conecta el regulador. Una variación de este patrón incluye una válvula de reserva en el conector de salida. Los cilindros están aislados del colector cuando están cerrados, y el colector se puede conectar o desconectar mientras los cilindros están presurizados. [41]

Más recientemente, se han puesto a disposición colectores que conectan los cilindros en el lado del cilindro de la válvula, dejando la conexión de salida de la válvula del cilindro disponible para la conexión de un regulador. Esto significa que la conexión no se puede hacer ni romper mientras los cilindros están presurizados, ya que no hay una válvula para aislar el colector del interior del cilindro. Este aparente inconveniente permite conectar un regulador a cada cilindro y aislarlo de la presión interna de forma independiente, lo que permite aislar un regulador defectuoso en un cilindro mientras que todavía permite que el regulador del otro cilindro acceda a todo el gas en ambos cilindros. [41] Estos colectores pueden ser simples o pueden incluir una válvula de aislamiento en el colector, lo que permite aislar el contenido de los cilindros entre sí. Esto permite aislar el contenido de un cilindro y asegurarlo para el buceador si una fuga en la rosca del cuello del cilindro, la conexión del colector o el disco de ruptura en el otro cilindro hace que se pierda su contenido. [41] Un sistema de colector relativamente poco común es una conexión que se enrosca directamente en las roscas del cuello de ambos cilindros y tiene una sola válvula para liberar gas a un conector para un regulador. Estos colectores pueden incluir una válvula de reserva, ya sea en la válvula principal o en un cilindro. Este sistema es principalmente de interés histórico. [17]

Los cilindros también pueden ser colectores mediante un látigo removible, comúnmente asociado con válvulas de cilindro de salida doble, y el suministro de gas de emergencia a bordo de una campana de buceo generalmente está colector mediante tuberías de aleación de metal semipermanentes entre las válvulas de cilindro.

Jaula de válvula

También conocida como jaula de colector o jaula de regulador, es una estructura que se puede sujetar al cuello del cilindro o cilindros con colector para proteger las válvulas y las primeras etapas del regulador contra daños por impacto y abrasión durante el uso, [41] : 166  y contra el cierre de la válvula por la fricción del volante contra un cabezal (desplazamiento). Una jaula de válvula suele estar hecha de acero inoxidable, [41] y algunos diseños pueden engancharse en obstrucciones.

Bandas cilíndricas

Las bandas para cilindros son correas, generalmente de acero inoxidable, que se utilizan para sujetar dos cilindros juntos como un conjunto doble. Los cilindros pueden ser múltiples o independientes. Es habitual utilizar una banda para cilindros cerca de la parte superior del cilindro, justo debajo de los hombros, y otra más abajo. La distancia convencional entre las líneas centrales para atornillar a una placa posterior es de 11 pulgadas (280 mm).

Bota de cilindro

Parte inferior de un conjunto de acero doble que muestra una banda de acero inoxidable para el tanque justo encima de los fuelles de plástico negro del cilindro. Los fuelles y la banda del tanque se han colocado sobre pequeñas cubiertas de red ajustadas para proteger la pintura y facilitar el enjuague y el secado de la superficie debajo de los fuelles.
Cilindros gemelos que muestran botas de cilindro, redes y banda inferior

Una bota de cilindro es una cubierta de plástico o goma dura que se coloca sobre la base de un cilindro de buceo para proteger la pintura de la abrasión y el impacto, para proteger la superficie sobre la que se apoya el cilindro del impacto con el cilindro y, en el caso de cilindros con fondo redondo, para permitir que el cilindro se mantenga en posición vertical sobre su base. [42] Algunas botas tienen planos moldeados en el plástico para reducir la tendencia del cilindro a rodar sobre una superficie plana. [43] En algunos casos, es posible que quede agua atrapada entre la bota y el cilindro, y si se trata de agua de mar y la pintura debajo de la bota está en malas condiciones, la superficie del cilindro puede corroerse en esas áreas. [42] [44] Esto generalmente se puede evitar enjuagándolo con agua dulce después de su uso y guardándolo en un lugar seco. La resistencia hidrodinámica adicional causada por una bota de cilindro es trivial en comparación con la resistencia general del buceador, pero algunos estilos de botas pueden presentar un riesgo ligeramente mayor de engancharse en el medio ambiente.

Red de cilindros

Una red para cilindros es una red tubular que se extiende sobre un cilindro y se ata en la parte superior e inferior. La función es proteger la pintura de los arañazos y, en los cilindros con botas, también ayuda a drenar la superficie entre la bota y el cilindro, lo que reduce los problemas de corrosión debajo de la bota. El tamaño de la malla suele ser de unos 6 milímetros (0,24 pulgadas). Algunos buceadores no utilizan botas ni redes, ya que pueden engancharse más fácilmente que un cilindro desnudo y constituyen un peligro de atrapamiento en algunos entornos, como cuevas y el interior de naufragios. Ocasionalmente, se pueden utilizar fundas hechas de otros materiales para proteger el cilindro. [43]

Mango cilíndrico

Parte superior de un cilindro de buceo que muestra un asa de transporte de plástico negro moldeado que se ajusta mediante una abrazadera alrededor del cuello del cilindro, justo debajo de la válvula del cilindro.
Mango de plástico para cilindro de buceo

Se puede colocar un asa cilíndrica, generalmente sujeta al cuello, para transportarla cómodamente. Esto también puede aumentar el riesgo de que se enganche en un entorno cerrado.

Tapones y tapas antipolvo

Se utilizan para cubrir el orificio de la válvula del cilindro cuando este no está en uso, para evitar que el polvo, el agua u otros materiales contaminen el orificio. También pueden ayudar a evitar que se caiga la junta tórica de una válvula tipo yugo. El tapón puede estar ventilado para que la fuga de gas del cilindro no lo presurice, lo que dificultaría su extracción. [45]

Clasificación de presión

El espesor de las paredes del cilindro está directamente relacionado con la presión de trabajo y esto afecta las características de flotabilidad del cilindro. Un cilindro de baja presión será más flotante que un cilindro de alta presión con un tamaño y proporciones de longitud y diámetro similares y de la misma aleación.

Presión de trabajo

Los cilindros de buceo son técnicamente todos contenedores de gas de alta presión, pero dentro de la industria en los Estados Unidos hay tres clasificaciones de presión de trabajo nominal (WP) de uso común; [46]

baja presión (2400 a 2640 psi — 165 a 182 bar),
estándar (3000 psi — 207 bar), y
alta presión (3300 a 3500 psi — 227 a 241 bar).

Los cilindros de aluminio fabricados en Estados Unidos suelen tener una presión de trabajo estándar de 3000 libras por pulgada cuadrada (210 bar), y la gama de aluminio compacto tiene una presión de trabajo de 3300 libras por pulgada cuadrada (230 bar). Algunos cilindros de acero fabricados según las normas de Estados Unidos pueden superar la presión de trabajo nominal en un 10 %, lo que se indica con un símbolo "+". Esta tolerancia de presión adicional depende de que el cilindro supere la prueba hidrostática periódica correspondiente de mayor estándar. [29]

Aquellas partes del mundo que utilizan el sistema métrico generalmente se refieren a la presión del cilindro directamente en bares, pero generalmente utilizarían "alta presión" para referirse a un cilindro con una presión de trabajo de 300 bares (4400 psi), que no se puede utilizar con un conector de yugo en el regulador. 232 bares es una presión de trabajo muy popular para cilindros de buceo tanto en acero como en aluminio.

Presión de prueba

La presión de prueba hidrostática (TP) se especifica según la norma de fabricación. Por lo general, es 1,5 × presión de trabajo o, en los Estados Unidos, 1,67 × presión de trabajo.

Presión desarrollada

La presión de trabajo de los cilindros se especifica a una temperatura de referencia, normalmente 15 °C o 20 °C. [47] y los cilindros también tienen una temperatura máxima de trabajo segura especificada, a menudo 65 °C. [47] La ​​presión real en el cilindro variará con la temperatura, como se describe en las leyes de los gases, pero esto es aceptable en términos de las normas siempre que la presión desarrollada cuando se corrija a la temperatura de referencia no exceda la presión de trabajo especificada estampada en el cilindro. Esto permite que los cilindros se llenen de manera segura y legal a una presión que es mayor que la presión de trabajo especificada cuando la temperatura de llenado es mayor que la temperatura de referencia, pero no más de 65 °C, siempre que la presión de llenado no exceda la presión desarrollada para esa temperatura, y los cilindros llenados de acuerdo con esta disposición estarán a la presión de trabajo correcta cuando se enfríen a la temperatura de referencia. [47]

Monitoreo de presión

Un manómetro con una carcasa protectora de goma y una manguera flexible de alta presión que se conectaría al puerto de alta presión de la primera etapa del regulador, de modo que se pueda controlar la presión interna de un cilindro de buceo durante una inmersión. El área de baja presión de la cara está coloreada en rojo para indicar que la presión puede ser demasiado baja para continuar buceando de manera segura.
Manómetro sumergible típico
La presión de los gases en los cilindros de buceo se mide en unidades tradicionales de Estados Unidos, psi ( libras por pulgada cuadrada ) y en el sistema métrico bar , donde 1 bar equivale a 100 kPa, 0,1 MPa o aproximadamente 14,5 psi. La carátula de este manómetro para cilindros fabricado en Estados Unidos está calibrada en libras por pulgada cuadrada en rojo y kilopascales en negro.

La presión interna de una botella de buceo se mide en varias etapas durante su uso. Se comprueba antes del llenado, se controla durante el llenado y se controla al finalizar el llenado. Todo esto se puede hacer con el manómetro del equipo de llenado.

El buceador también suele controlar la presión. Primero, para comprobar el contenido antes de su uso, luego, durante el uso, para asegurarse de que siempre quede suficiente líquido para poder completar la inmersión de forma segura y, a menudo, después de una inmersión, para llevar un registro y calcular el consumo personal.

La presión también se controla durante la prueba hidrostática para garantizar que la prueba se realice a la presión correcta.

La mayoría de los cilindros de buceo no tienen un manómetro específico, pero esta es una característica estándar en la mayoría de los reguladores de buceo y un requisito en todas las instalaciones de llenado.

Existen dos estándares generalizados para la medición de la presión del gas de buceo. En los Estados Unidos y quizás [ cita requerida ] en algunos otros lugares, la presión se mide en libras por pulgada cuadrada (psi), y en el resto del mundo se utiliza el bar . A veces, los medidores pueden calibrarse en otras unidades métricas, como kilopascal (kPa) o megapascal (MPa), o en atmósferas (atm o ATA), en particular los medidores que no se utilizan realmente bajo el agua.

Capacidad

Se muestran dos cilindros de acero: el más grande tiene aproximadamente el doble de diámetro que el más pequeño y es aproximadamente un 20% más largo.
Cilindros de buceo de acero de 12 y 3 litros: tamaños típicos de Primary y Pony

Existen dos convenciones que se utilizan comúnmente para describir la capacidad de un cilindro de buceo. Una se basa en el volumen interno del cilindro. La otra se basa en el volumen nominal del gas almacenado.

Volumen interno

El volumen interno se expresa comúnmente en la mayoría de los países que utilizan el sistema métrico. La norma ISO 13769 exige que esta información se estampe en el hombro del cilindro. Se puede medir fácilmente llenando el cilindro con agua dulce. Esto ha dado lugar al término "capacidad de agua", abreviado como WC, que a menudo se estampa en el hombro del cilindro. Casi siempre se expresa como un volumen en litros, pero a veces como masa del agua en kg. El agua dulce tiene una densidad cercana a un kilogramo por litro, por lo que los valores numéricos son prácticamente idénticos con una precisión de dos decimales. [27]

Tamaños estándar por volumen interno

Estos son ejemplos representativos, para una gama más amplia se pueden consultar los catálogos on-line de fabricantes como Faber, Pressed Steel, Luxfer y Catalina. Las aplicaciones son típicas, pero no exclusivas.

Volumen nominal de gas almacenado

En los EE. UU., el volumen nominal de gas almacenado se conoce comúnmente como la capacidad del cilindro. Es una medida del volumen de gas que se puede liberar del cilindro lleno a presión atmosférica. [40] Los términos utilizados para la capacidad incluyen "volumen de gas libre" o "equivalente de gas libre". Depende del volumen interno y de la presión de trabajo de un cilindro. Si la presión de trabajo es mayor, el cilindro almacenará más gas para el mismo volumen.

La presión de trabajo nominal no es necesariamente la misma que la presión de trabajo real utilizada. Algunos cilindros de acero fabricados según las normas de EE. UU. pueden superar la presión de trabajo nominal en un 10 %, lo que se indica con un símbolo "+". Esta tolerancia de presión adicional depende de que el cilindro pase la prueba hidrostática periódica correspondiente y no es necesariamente válida para los cilindros estadounidenses exportados a países con normas diferentes. El contenido de gas nominal de estos cilindros se basa en una presión un 10 % superior. [29]

Por ejemplo, un cilindro de aluminio 80 (Al80) común es un cilindro de aluminio que tiene una capacidad nominal de "gas libre" de 80 pies cúbicos (2300 L) cuando se presuriza a 3000 libras por pulgada cuadrada (210 bar). Tiene un volumen interno de aproximadamente 11 litros (0,39 pies cúbicos).

Tamaños estándar por volumen de gas almacenado

Dimensiones físicas

En este artículo se describen cilindros fabricados con acero sin costura y aleaciones de aluminio. Las limitaciones de los cilindros compuestos con filamento bobinado varían:

Existe una pequeña cantidad de diámetros exteriores estandarizados, ya que esto resulta rentable para la fabricación, ya que la mayor parte de las mismas herramientas se pueden compartir entre cilindros del mismo diámetro y espesor de pared. Una cantidad limitada de diámetros estándar también es conveniente para compartir accesorios como colectores, fuelles y bandas de tanque. El volumen dentro de una serie con un diámetro exterior determinado se controla mediante el espesor de pared, que es consistente para el material, la clase de presión y el estándar de diseño, y la longitud, que es la variable básica para controlar el volumen dentro de una serie. La masa se determina mediante estos factores y la densidad del material. Los cilindros de acero están disponibles en las siguientes clases de tamaño, y posiblemente otras: [55]

El espesor de la pared varía según la ubicación, el material, la clasificación de presión y las consideraciones prácticas. Los lados de la sección cilíndrica son suficientes para soportar las tensiones de una gran cantidad de ciclos para probar la presión, con un margen para una pequeña cantidad de pérdida de material debido a la corrosión general y daños locales menores debido a la abrasión y el desgaste normal por el uso, y una profundidad limitada de daño local debido a la corrosión por picaduras y líneas y daños físicos. La cantidad de daño y pérdida de material permitida es compatible con los criterios de rechazo de la inspección visual. Los cilindros de acero están diseñados para que las tensiones de prueba estén por debajo del límite de fatiga de la aleación. El espesor de la pared es aproximadamente proporcional al diámetro para una presión de prueba y resistencia del material dadas: si el diámetro es el doble, el espesor de pared básico también se duplicará. El espesor de pared también es proporcional a la presión de trabajo y la presión de prueba para un diámetro y una especificación de material dados. La sección cilíndrica tiene el espesor de pared más bajo y es consistente dentro de las tolerancias de fabricación para toda la sección cilíndrica.

El espesor de los extremos permite un desgaste y corrosión considerablemente mayores en la parte inferior del cilindro, y el hombro se hace más grueso para permitir las variabilidades inherentes al proceso de fabricación para cerrar el extremo y para cualquier aumento de tensión debido al proceso de marcado de estampación permanente. En gran medida, la distribución del espesor de la base de un cilindro de acero y el espesor del hombro de todos los cilindros de metal están influenciados por el proceso de fabricación, y pueden ser más gruesos de lo estrictamente necesario para la resistencia y la tolerancia a la corrosión. Los cilindros de acero Faber según las normas CE han disminuido ligeramente en masa para el mismo tamaño de cilindro a partir de 2023. Un cilindro de 15 litros a 200 bar con un fondo abovedado de 203 mm de diámetro exterior se redujo de 16,2 kg a 145 kg. El cilindro equivalente a 232 bar se redujo de 18,2 a 16,7 kg. [56]

Características de flotabilidad

La densidad de un cilindro se concentra en los extremos, que tienen paredes relativamente gruesas y un volumen encerrado menor por unidad de masa. Los detalles varían según la especificación, pero esta tendencia es común a los cilindros de acero y aluminio, y es más extrema en los extremos planos o cóncavos. Como consecuencia, los cilindros largos y estrechos son menos densos que los cilindros cortos y anchos para el mismo material y la misma configuración de los extremos, mientras que para el mismo volumen interno, un cilindro corto y ancho es más pesado que un cilindro largo y estrecho.

La flotabilidad de una botella de buceo solo tiene relevancia práctica en combinación con la válvula de la botella, el regulador de buceo y los accesorios del regulador, ya que no se utilizará bajo el agua sin ellos. Estos accesorios se colocan en la parte superior de la botella y ambos reducen la flotabilidad de la unidad combinada y desplazan el centro de gravedad hacia la parte superior (extremo con válvula). Esto afecta la orientación de la botella para el montaje lateral y con eslinga.

Los conjuntos de cilindros montados en la parte posterior generalmente no se quitan durante una inmersión, y las características de flotabilidad se pueden tener en cuenta al comienzo de la inmersión, asegurándose de que el buceador tenga suficiente flotabilidad de reserva para flotar con los cilindros llenos y suficiente lastre para permanecer sumergido cuando los cilindros estén todos vacíos. El compensador de flotabilidad debe ser suficiente para proporcionar cierta flotabilidad positiva a todas las profundidades con los cilindros llenos. Los ajustes al lastre pueden compensar otras variables de flotabilidad. La incapacidad de permanecer constantemente sumergido en la parada de descompresión más superficial puede provocar una descompresión incompleta y un mayor riesgo de enfermedad por descompresión.

El cambio de flotabilidad de un cilindro de buceo durante la inmersión puede ser más problemático con cilindros montados lateralmente, y la flotabilidad real en cualquier punto durante la inmersión es un factor a considerar con cualquier cilindro que pueda separarse del buceador por cualquier motivo. Los cilindros que se dejarán caer en el escenario o se entregarán a otro buceador no deben cambiar la flotabilidad del buceador más allá de lo que se puede compensar utilizando su compensador de flotabilidad. Los cilindros con flotabilidad aproximadamente neutra cuando están llenos generalmente requieren la menor compensación cuando se separan, ya que es probable que se separen para el escenario o se entreguen cuando están relativamente llenos. Es menos probable que esto sea un problema para el equipo de rescate de un buceador en solitario , ya que habrá menos ocasiones para quitarlo durante una inmersión. Se espera que los equipos de montaje lateral para penetraciones estrechas se balanceen hacia adelante o se separen para pasar a través de constricciones estrechas, y no deben afectar gravemente el equilibrio o la flotabilidad durante estas maniobras.

Faber Industrie Spa, un importante fabricante de cilindros de acero, afirma que sus cilindros de acero son neutros o ligeramente negativos cuando están vacíos, pero no especifica a qué presión nominal se refiere ni si esto tiene en cuenta la válvula del cilindro. [57]

Aplicaciones y configuraciones

Se muestra la vista frontal de un buzo de pie, listo para meterse al agua. Lleva un cilindro de aluminio montado en una eslinga a cada lado, sujeto a un anillo en D en el pecho y a un anillo en D en la cadera.
Buceador técnico con gases de descompresión en cilindros de etapa montados lateralmente.

Los buceadores pueden llevar una o varias botellas, según los requisitos de la inmersión. Cuando el buceo se realiza en zonas de bajo riesgo, donde el buceador puede realizar un ascenso libre de forma segura o donde hay un compañero disponible para proporcionar un suministro de aire alternativo en caso de emergencia, los buceadores recreativos suelen llevar solo una botella. Cuando los riesgos del buceo son mayores, por ejemplo, cuando la visibilidad es baja o cuando la inmersión es más profunda y se requieren paradas de descompresión , y en particular cuando se bucea bajo una superficie superior, los buceadores suelen llevar más de una fuente de gas.

Los cilindros de buceo pueden servir para diferentes propósitos. Se pueden utilizar uno o dos cilindros como fuente principal de respiración, que se pretende utilizar durante la mayor parte de la inmersión. Un cilindro más pequeño que se lleva además de un cilindro más grande se denomina " botella de reserva ". Un cilindro que se utiliza únicamente como reserva de seguridad independiente se denomina " botella de rescate " o suministro de gas de emergencia (EGS). [59] Una botella de reserva se utiliza comúnmente como botella de rescate, pero esto dependería del tiempo necesario para salir a la superficie.

Los buceadores que realizan buceo técnico a menudo llevan diferentes gases, cada uno en un cilindro separado, para cada fase de la inmersión: [60]

Buceo en circuito abierto

Para los buceadores de circuito abierto, existen varias opciones básicas para la configuración del sistema combinado de cilindro y regulador:

Se muestra un cilindro de buceo de gran tamaño, con un mango, una funda, una red de plástico y un regulador de manguera simple con una válvula de demanda, una consola de manómetro sumergible combinada y dos mangueras infladoras de baja presión.
Equipo de buceo de circuito abierto con cilindro único con abrazadera en A, de 15 litros y 232 bares

Montaje trasero de un solo cilindro

Una configuración de un solo cilindro suele ser un solo cilindro grande, normalmente montado en la parte posterior, con un regulador de primera etapa y, normalmente, dos reguladores de segunda etapa. Esta configuración es sencilla y barata, pero solo tiene un único suministro de gas respirable y no tiene redundancia en caso de fallo. Si el cilindro o el regulador de primera etapa falla, el buceador se queda totalmente sin aire y se enfrenta a una emergencia potencialmente mortal. Las agencias de formación de buceo recreativo entrenan a los buceadores para que confíen en un compañero que les ayude en esta situación. La habilidad de compartir gases se entrena en la mayoría de los cursos de buceo de nivel inicial. Esta configuración de equipo, aunque es común entre los buceadores de nivel inicial y se utiliza para la mayoría del buceo deportivo, no es recomendada por las agencias de formación para ninguna inmersión en la que se necesiten paradas de descompresión o donde haya un entorno elevado ( buceo en naufragios , buceo en cuevas o buceo en hielo ), ya que no proporciona redundancia funcional .

Un cilindro simple con reguladores dobles consta de un solo cilindro grande montado en la parte posterior, con dos reguladores de primera etapa, cada uno con un regulador de segunda etapa. Este sistema se utiliza principalmente para buceo donde el agua fría hace que el riesgo de congelamiento del regulador sea alto y se requiere redundancia funcional del regulador. [63] Es común en Europa continental, especialmente en Alemania. La ventaja es que una falla del regulador se puede resolver bajo el agua para llevar la inmersión a una conclusión controlada sin la respiración de un compañero o compartir gases. [63] Sin embargo, es difícil alcanzar las válvulas, por lo que puede haber cierta dependencia del compañero de buceo para ayudar a cerrar la válvula del regulador de flujo libre rápidamente.

Cilindro principal más un pequeño cilindro independiente

Esta configuración utiliza un cilindro principal más grande, montado en la parte posterior, junto con un cilindro independiente más pequeño, a menudo llamado "pony" o "cilindro de rescate". [62] El buzo tiene dos sistemas independientes, pero el "sistema de respiración" total ahora es más pesado y más costoso de comprar y mantener.

El pony es, por lo general, un cilindro de 2 a 5 litros. Su capacidad determina la profundidad de la inmersión y la duración de la descompresión durante la cual brinda protección. Los ponys pueden fijarse al compensador de flotabilidad (BC) del buceador o al cilindro principal detrás de la espalda del buceador, o pueden sujetarse al arnés en el costado o el pecho del buceador o llevarse como un cilindro colgante. Los ponys brindan un suministro de gas de emergencia aceptado y confiable, pero requieren que el buceador esté capacitado para usarlos.

Otro tipo de fuente de aire independiente pequeña es un cilindro portátil lleno de aproximadamente 85 litros (3,0 pies cúbicos) de aire libre con un regulador de buceo conectado directamente, como el Spare Air. [64] Esta fuente proporciona solo unas pocas bocanadas de gas en profundidad y es más adecuada como rescate en aguas poco profundas.

Vista trasera de un conjunto de cilindros gemelos independientes atados a un arnés de chaqueta, cada uno con un regulador de buceo instalado.
Conjunto doble independiente de válvulas de columna DIN, 7 litros, 232 bar. El cilindro izquierdo muestra marcas del fabricante. El cilindro derecho muestra sellos de prueba.

Gemelos independientes

Los equipos gemelos independientes odobles independientesconstan de dos botellas independientes y dos reguladores, cada uno con un manómetro sumergible. Este sistema es más pesado, más caro de comprar y mantener y más caro de llenar que un equipo de una sola botella. El buceador debe cambiar las válvulas de demanda durante la inmersión para preservar una reserva suficiente de gas en cada botella. Si esto no se hace, entonces si una botella falla, el buceador puede terminar teniendo una reserva inadecuada. Los equipos gemelos independientes solo funcionan bien concomputadoras de buceo integradas en el aireque pueden monitorear dos o más botellas. La complejidad de cambiar los reguladores periódicamente para garantizar que ambas botellas se usen de manera uniforme puede compensarse con la redundancia de dos suministros de gas respirable completamente separados. Las botellas se pueden montar como un equipo doble en la espalda del buceador o, alternativamente, se pueden llevar en unamontaje lateraldonde la penetración en pecios o cuevas lo requiera y donde las válvulas de las botellas estén al alcance de la mano.

Mellizos simples con múltiples

Los conjuntos gemelos con colector simple , o conjuntos dobles con colector con un solo regulador, consisten en dos cilindros montados en la parte posterior con sus válvulas de columna conectadas por un colector, pero solo un regulador está conectado al colector. Esto lo hace relativamente simple y económico, pero significa que no hay una funcionalidad redundante para el sistema de respiración, solo un suministro doble de gas. Esta disposición era bastante común en los primeros días del buceo, cuando los cilindros de baja presión se conectaban con colectores para proporcionar un suministro de aire mayor que el que era posible con los cilindros individuales disponibles. Todavía se usa para equipos de rescate de gran capacidad para buceo comercial profundo. [65]

La parte superior de un bimotor con colector se muestra sobre el hombro derecho del buceador.
Equipo de buceo doble de 12 litros y 232 bares con colector de aislamiento, dos válvulas de columna con abrazadera en A y dos reguladores

Aislamiento de gemelos múltiples

Los conjuntos gemelos con colector de aislamiento o dobles con colector con dos reguladores, consisten en dos cilindros montados en la parte posterior con sus válvulas de columna conectadas por un colector , con una válvula en el colector que se puede cerrar para aislar las dos válvulas de columna. En caso de un problema con un cilindro, el buzo puede cerrar la válvula de aislamiento para preservar el gas en el cilindro que no ha fallado. Las ventajas de esta configuración incluyen: un suministro de gas mayor que el de un solo cilindro; equilibrio automático del suministro de gas entre los dos cilindros; por lo tanto, no hay necesidad de cambiar constantemente los reguladores bajo el agua durante la inmersión; y en la mayoría de las situaciones de falla, el buzo puede cerrar una válvula de un regulador averiado o aislar un cilindro y puede retener el acceso a todo el gas restante en ambos tanques. Las desventajas son que el colector es otro punto potencial de falla, y existe el peligro de perder todo el gas de ambos cilindros si la válvula de aislamiento no se puede cerrar cuando ocurre un problema. Esta configuración de cilindros se utiliza a menudo en el buceo técnico . [60]

El arnés de eslinga se muestra en un cilindro vertical, con los broches de presión para la conexión al pecho y la cadera y la cinta de conexión y un cinturón de leva que asegura el extremo inferior de la correa de la cinta al cuerpo del cilindro.
Cilindro de aluminio largo de 9,2 litros preparado para montaje en eslinga

Cilindros de eslinga

Los cilindros de eslinga son una configuración de cilindros independientes que se utilizan para el buceo técnico y el buceo en solitario . Son cilindros independientes con sus propios reguladores y se llevan sujetos al arnés al costado del buceador. Su propósito puede ser transportar gas de etapa, de viaje, de descompresión o de rescate, mientras que el o los cilindros montados en la parte posterior transportan gas de fondo. Los cilindros de etapa transportan gas para extender el tiempo en el fondo, el gas de viaje se utiliza para alcanzar una profundidad en la que se puede usar gas de fondo de manera segura si hay hipoxia en la superficie, y el gas de descompresión es un gas destinado a usarse durante la descompresión para acelerar la eliminación de gases inertes. El gas de rescate es un suministro de emergencia destinado a usarse para salir a la superficie si se pierde el suministro principal de gas. [60]

Un par de cilindros que muestran los reguladores configurados para el buceo con montaje lateral. Cada regulador tiene una manguera de inflado corta de baja presión que se proyecta hacia donde estaría el cuerpo del buceador, y las mangueras DV están guardadas debajo de cuerdas elásticas. Los manómetros sumergibles están en mangueras cortas alineadas con los ejes del cilindro.
Juego de cilindros de montaje lateral con reguladores instalados.

Cilindros de montaje lateral

Los cilindros de montaje lateral son cilindros que se sujetan al arnés a los costados del buceador y que transportan gas de fondo cuando el buceador no lleva cilindros de montaje posterior. Se pueden usar junto con otros cilindros de etapa, de viaje y/o de descompresión de montaje lateral cuando sea necesario. Los buceadores expertos en montaje lateral pueden llevar hasta tres cilindros en cada lado. [66] [67] Esta configuración se desarrolló para el acceso a través de restricciones estrictas en cuevas. El montaje lateral se utiliza principalmente para el buceo técnico, pero también se utiliza a veces para el buceo recreativo, cuando se puede llevar un solo cilindro, completo con un regulador secundario de segunda etapa (pulpo), en una configuración a veces denominada buceo de mono. [68]

Cilindros de transferencia

AUn cilindro de mano es un equipo de buceo, generalmente preparado para un montaje lateral o con eslinga, que puede ser pasado (entregado) a otro buzo para su uso durante una contingencia o una parte planificada de una inmersión, por un rescatador o un buzo de apoyo o de reserva. La entrega del cilindro permite al buzo receptor maniobrar independientemente del donante, y el procedimiento de entrega no debe comprometer la capacidad de ninguno de los buzos para mantener la flotabilidad neutra si es necesario por seguridad. En la mayoría de los casos será más fácil para el buzo receptor ajustar la flotabilidad agregando gas a su compensador de flotabilidad para compensar la masa de gas en un cilindro que es neutralmente flotante cuando está vacío que tener que vaciar el gas del chaleco compensador cuando el gas en el cilindro se agota, si está correctamente lastrado.

Cilindros de caída

Los cilindros de caída, o cilindros de caída de etapa, son cilindros completos con regulador y manómetro, generalmente montados como cilindros de montaje lateral o de eslinga, que están diseñados para quitarse y dejarse en la guía durante la primera parte de una inmersión, para ser recogidos en el camino de regreso.

Rebreathers

Vista posterior de un rebreather "Inspiration" con la cubierta quitada, que muestra la unidad depuradora en el medio, con un pequeño cilindro a cada lado. Las válvulas del cilindro están en el extremo inferior de la unidad para facilitar el acceso durante el uso; las perillas de la válvula sobresalen por los lados de la cubierta cuando está cerrada, a la altura de la cintura del buceador. El cilindro de oxígeno está a la derecha y tiene una perilla verde. El cilindro de diluyente tiene una perilla negra.
Dos cilindros con válvula DIN de 3 litros y 232 bares dentro de un rebreather de buceo de circuito cerrado controlado electrónicamente Inspiration .

Los cilindros de buceo se utilizan en el buceo con rebreather en dos funciones:

  • Los rebreathers de oxígeno tienen un cilindro de oxígeno
  • Los rebreathers de circuito semicerrado tienen un cilindro que generalmente contiene nitrox o un gas a base de helio. [69]
  • Los rebreathers de circuito cerrado tienen un cilindro de oxígeno y un cilindro "diluyente", que contiene aire, nitrox o un gas a base de helio. [69]

Suministro de gas de emergencia para buceadores con suministro desde la superficie

Se muestra desde arriba, parcialmente en el agua, a un buzo que lleva un casco liviano con un cordón umbilical de suministro de superficie y un solo cilindro de rescate montado en la espalda, subiendo por una escalera de abordaje en el costado de un bote.
Buzo comercial provisto de superficie que lleva un solo cilindro de rescate conectado al bloque de rescate del casco

Los buceadores con suministro desde la superficie suelen tener que llevar un suministro de gas de emergencia suficiente para poder regresar a un lugar seguro si falla el suministro principal de gas. La configuración habitual es una botella individual montada en la espalda y sostenida por el arnés de seguridad del buceador, con un regulador de primera etapa conectado por una manguera de baja presión a un bloque de emergencia, que puede montarse en el lateral del casco o la máscara de banda o en el arnés para abastecer una máscara facial completa ligera. [71] [72] [73] Cuando la capacidad de una botella individual es insuficiente, se pueden utilizar botellas gemelas con colector simple o un rebreather. Para inmersiones de saturación y rebote en campana cerrada, el equipo de emergencia debe ser lo suficientemente compacto para permitir que el buceador pase a través de la escotilla inferior de la campana. Esto establece un límite en el tamaño de las botellas que se pueden utilizar. [65] [74]

Suministro de gas de emergencia en campanas de buceo

Vista exterior de una campana cerrada, que muestra la puerta lateral a la izquierda, con un cilindro de oxígeno de 50 litros y dos cilindros de heliox de 50 litros montados en el marco al costado de la puerta.
Una campana cerrada utilizada para buceo de saturación que muestra cilindros de suministro de gas de emergencia.

Las campanas de buceo deben llevar a bordo un suministro de gas respirable para su uso en caso de emergencia. [75] [76] Los cilindros se montan en el exterior, ya que no hay suficiente espacio en el interior. Se sumergen completamente en el agua durante el funcionamiento de la campana y pueden considerarse cilindros de buceo.

Cilindros de inflado de trajes

Un pequeño cilindro de aluminio, pintado de azul, con una etiqueta que identifica el contenido como argón.
Cilindro de argón sumergible para inflar trajes secos. El color azul es un requisito legal en Sudáfrica

El gas para inflar los trajes puede transportarse en un pequeño cilindro independiente. A veces se utiliza argón por sus propiedades de aislamiento superiores. Este gas debe estar claramente etiquetado y también puede ser necesario codificarlo por colores para evitar su uso involuntario como gas respirable, lo que podría ser fatal, ya que el argón es asfixiante .

Otros usos de los cilindros de gas comprimido en operaciones de buceo

Los buceadores también utilizan cilindros de gas sobre el agua para almacenar oxígeno para el tratamiento de primeros auxilios en caso de trastornos del buceo y como parte de los "bancos" de almacenamiento para estaciones de compresores de aire de buceo , mezcla de gases , gas respirable suministrado desde la superficie y suministros de gas para cámaras de descompresión y sistemas de saturación . También se utilizan cilindros similares para muchos fines no relacionados con el buceo. Para estas aplicaciones, no son cilindros de buceo y pueden no estar sujetos a los mismos requisitos reglamentarios que los cilindros utilizados bajo el agua.

Cálculos de gas

Es necesario conocer el tiempo aproximado que un buceador puede respirar de un cilindro determinado para poder planificar un perfil de inmersión seguro. [77]

Este problema tiene dos partes: la capacidad del cilindro y el consumo del buceador.

La capacidad del cilindro para almacenar gas.

Dos características del cilindro determinan su capacidad de transporte de gas:

A las presiones que se aplican a la mayoría de los cilindros de buceo, la ecuación del gas ideal es suficientemente precisa en casi todos los casos, ya que las variables que se aplican al consumo de gas generalmente superan el error en la suposición del gas ideal.

Para calcular la cantidad de gas:

Volumen de gas a presión atmosférica = (volumen del cilindro) x (presión del cilindro) / (presión atmosférica)

En aquellas partes del mundo donde se utiliza el sistema métrico, el cálculo es relativamente simple, ya que la presión atmosférica puede aproximarse a 1 bar, por lo que un cilindro de 12 litros a 232 bar contendría casi 12 × 232 / 1 = 2784 litros (98,3 pies cúbicos) de aire a presión atmosférica (también conocido como aire libre).

En los EE. UU., la capacidad de un cilindro de buceo se especifica directamente en pies cúbicos de aire libre a la presión de trabajo nominal, ya que el cálculo a partir del volumen interno y la presión de trabajo es relativamente tedioso en unidades imperiales. Por ejemplo, en los EE. UU. y en muchos centros de buceo de otros países, se pueden encontrar cilindros de aluminio de fabricación estadounidense con una capacidad interna de 0,39 pies cúbicos (11 L) llenos a una presión de trabajo de 3000 psi (210 bar); tomando la presión atmosférica como 14,7 psi, esto da 0,39 × 3000 / 14,7 = 80 ft 3 Estos cilindros se describen como "cilindros de 80 pies cúbicos" (el común "aluminio 80").

Hasta aproximadamente 200 bar la ley de los gases ideales sigue siendo útil y la relación entre la presión, el tamaño del cilindro y el gas contenido en el cilindro es aproximadamente lineal; a presiones más altas esta linealidad ya no se aplica, y hay proporcionalmente menos gas en el cilindro. Un cilindro de 3 litros lleno a 300 bar solo contendrá 810 litros (29 pies cúbicos) de aire a presión atmosférica y no los 900 litros (32 pies cúbicos) esperados de acuerdo con la ley de los gases ideales. Se han propuesto ecuaciones que brindan soluciones más precisas a alta presión, incluida la ecuación de Van der Waals . La compresibilidad a presiones más altas también varía entre gases y mezclas de gases.

Consumo de gas del buceador

Hay tres factores principales a tener en cuenta:

Para calcular la cantidad de gas consumido:

Gas consumido = consumo de aire de la superficie × tiempo × presión ambiental

Ejemplos de métricas:

Un buceador con un RMV de 20 L/min a 30 msw (4 bar), consumirá 20 × 4 × 1 = 80 L/min de equivalente de superficie.
Un buceador con un RMV de 40 L/min a 50 msw (6 bar) durante 10 minutos consumirá 40 × 6 × 10 = 2400 litros de aire libre: la capacidad total de un cilindro de 12 litros a 200 bar.

Ejemplos imperiales:

Un buzo con un SAC de 0,5 cfm (pies cúbicos por minuto) a 100  fsw (4 ata) consumirá 0,5 × 4 × 1 = 2 cfm de superficie equivalente.
Un buzo con un SAC de 1 cfm a 231 fsw (8 ata) durante 10 minutos consumirá 1 × 8 × 10 = 80 ft 3 de aire libre: la capacidad total de un cilindro de 80 ft 3

Teniendo esto en mente, no es difícil entender por qué los buzos técnicos que realizan inmersiones profundas y prolongadas requieren múltiples cilindros o rebreathers , y los buzos comerciales normalmente utilizan equipos de buceo provistos desde la superficie y solo llevan equipo de buceo como suministro de gas de emergencia .

Resistencia al gas respiratorio

La cantidad de tiempo que un buzo puede respirar de un cilindro también se conoce como resistencia al aire o al gas.

La duración máxima de la respiración (T) para una profundidad determinada se puede calcular como

T = aire disponible / tasa de consumo [80]

que, utilizando la ley de los gases ideales , es

T = (presión disponible en el cilindro × volumen del cilindro) / (tasa de consumo de aire en la superficie) × (presión ambiente) [80]

Esto podría escribirse como

(1) T = (P C - P A )×V C /(SAC×P A )

con

T = Tiempo
P C = Presión del cilindro
V C = Volumen interno del cilindro
P A = Presión ambiente
SAC = Consumo de aire en superficie

en cualquier sistema consistente de unidades.

La presión ambiental (P A ) es la presión del agua circundante a una profundidad determinada y está formada por la suma de la presión hidrostática y la presión del aire en la superficie. Se calcula como

(2) P A = D×g×ρ + presión atmosférica [81]

con

D = profundidad
g = Gravedad estándar
ρ = densidad del agua

en un sistema consistente de unidades

Para unidades métricas, esta fórmula se puede aproximar mediante

(3) PA = D/10 + 1

con profundidad en m y presión en bar

La presión ambiente se deduce de la presión del cilindro, ya que la cantidad de aire representada por P A en la práctica no puede ser utilizada para respirar por el buceador, ya que es necesaria para equilibrar la presión ambiental del agua.

Esta fórmula no tiene en cuenta la presión de apertura necesaria para abrir la primera y la segunda etapa del regulador, ni la caída de presión debida a las restricciones de flujo en el regulador, que son variables según el diseño y el ajuste del regulador, ni el caudal, que depende del patrón respiratorio del buceador y del gas en uso. Estos factores no se pueden calcular fácilmente, por lo que el valor calculado para la duración de la respiración será mayor que el valor real.

Sin embargo, en el uso normal del buceo, siempre se incluye una reserva. La reserva es una proporción de la presión del cilindro que un buceador no planea utilizar salvo en caso de emergencia. La reserva puede ser un cuarto o un tercio de la presión del cilindro o puede ser una presión fija; los ejemplos más comunes son 50 bar y 500 psi. La fórmula anterior se modifica para obtener la duración de respiración utilizable (BT = tiempo de respiración) como

(4) BT = (P C -P R )×V C /(SAC×P A )

donde P R es la presión de reserva.

Por ejemplo, (utilizando la primera fórmula (1) para el tiempo de respiración máximo absoluto), un buceador a una profundidad de 15 metros en agua con una densidad media de 1020 kg/m3 ( agua de mar típica), que respira a un ritmo de 20 litros por minuto, utilizando un cilindro de buceo de 18 litros presurizado a 200 bares, puede respirar durante un período de 72 minutos antes de que la presión del cilindro caiga tanto que impida la inhalación. En algunos sistemas de buceo de circuito abierto esto puede suceder de forma bastante repentina, de una respiración normal a la siguiente respiración anormal, una respiración que puede no ser realizada completamente. (Nunca hay ninguna dificultad para exhalar). La brusquedad de este efecto depende del diseño del regulador y del volumen interno del cilindro. En tales circunstancias, sigue habiendo aire bajo presión en el cilindro, pero el buceador no puede respirarlo. Parte de ella se puede respirar si el buceador asciende, pues la presión ambiental se reduce, e incluso sin ascenso, en algunos sistemas un poco de aire del cilindro está disponible para inflar los dispositivos compensadores de flotabilidad (BCD) incluso cuando ya no tiene suficiente presión para abrir la válvula de demanda.

Utilizando las mismas condiciones y una reserva de 50 bar, la fórmula (4) para el tiempo de respiración utilizable es la siguiente:

Presión ambiente = presión del agua + presión atmosférica = 15  msw / 10 bar por msw + 1 = 2,5 bar
Presión utilizable = presión de llenado - presión de reserva = 200 bar - 50 bar = 150 bar
Aire utilizable = presión utilizable × capacidad del cilindro = 150 bar × 18 litros por bar = 2700 litros
Tasa de consumo = consumo de aire de la superficie × presión ambiente = 20 litros por minuto por bar × 2,5 bar = 50 litros/min
Tiempo de respiración utilizable = 2700 litros / 50 litros por minuto = 54 minutos

Esto daría un tiempo de inmersión de 54 minutos a 15 m antes de alcanzar la reserva de 50 bar.

Reservas

Las organizaciones de formación de buceadores y los códigos de práctica recomiendan encarecidamente que se reserve una parte del gas utilizable del cilindro como reserva de seguridad. La reserva está destinada a proporcionar gas para paradas de descompresión más prolongadas que las planificadas o para dar tiempo a resolver emergencias submarinas. [80]

El tamaño de la reserva depende de los riesgos que se presenten durante la inmersión. Una inmersión profunda o con descompresión justifica una reserva mayor que una inmersión poco profunda o sin paradas. En el buceo recreativo , por ejemplo, se recomienda que el buceador planee salir a la superficie con una reserva restante en el cilindro de 500 psi, 50 bar o el 25% de la capacidad inicial, según las enseñanzas de la organización de formación de buceadores . Esto se debe a que los buceadores recreativos que practican dentro de los límites de "sin descompresión" normalmente pueden realizar un ascenso directo en caso de emergencia. En las inmersiones técnicas en las que un ascenso directo es imposible (debido a obstrucciones superiores) o peligroso (debido al requisito de hacer paradas de descompresión), los buceadores planean márgenes de seguridad más amplios. El método más simple utiliza la regla de los tercios : un tercio del suministro de gas se planifica para el viaje de ida, un tercio es para el viaje de regreso y un tercio es una reserva de seguridad. [82]

Algunas agencias de capacitación enseñan el concepto de gas mínimo, manejo de gas de fondo o presiones críticas que permiten a un buzo calcular una reserva aceptable para llevar a dos buzos a la superficie en una emergencia desde cualquier punto del perfil de inmersión planificado. [60]

Los buceadores profesionales pueden estar obligados por la legislación o por los códigos de práctica de la industria a llevar suficiente gas de reserva para poder llegar a un lugar seguro, como la superficie, o una campana de buceo, según el perfil de inmersión planificado. [72] [73] Por lo general, se requiere que este gas de reserva se lleve como un suministro de gas de emergencia independiente (EGS), también conocido como cilindro , equipo o botella de rescate . [83] Esto generalmente también se aplica a los buceadores profesionales que utilizan equipo de buceo con suministro desde la superficie . [72]

Peso del gas consumido

La densidad del aire a nivel del mar y a 15 °C es de aproximadamente 1,225 kg/m 3 . [84] La mayoría de los cilindros de buceo de tamaño completo que se utilizan para el buceo en circuito abierto contienen más de 2 kilogramos (4,4 lb) de aire cuando están llenos y, a medida que se utiliza el aire, la flotabilidad del cilindro aumenta por el peso eliminado. La disminución del volumen externo del cilindro debido a la reducción de la presión interna es relativamente pequeña y se puede ignorar para fines prácticos.

Por ejemplo, una botella de 12 litros puede llenarse hasta 230 bares antes de una inmersión y respirar hasta 30 bares antes de salir a la superficie, utilizando 2400 litros o 2,4 m3 de aire libre. La masa de gas utilizada durante la inmersión dependerá de la mezcla: si se supone que se utiliza aire, será de aproximadamente 2,9 kilogramos (6,4 libras).

La pérdida de peso del gas extraído de la botella hace que tanto la botella como el buceador sean más flotantes. Esto puede ser un problema si el buceador no puede mantener una flotabilidad neutra hacia el final de la inmersión porque la mayor parte del gas se ha exhalado de la botella. El cambio de flotabilidad debido al uso de gas de las botellas montadas en la espalda se compensa fácilmente llevando suficientes pesos de buceo para proporcionar flotabilidad neutra con las botellas vacías al final de una inmersión y utilizando el compensador de flotabilidad para neutralizar el exceso de peso hasta que se haya utilizado el gas.

Relleno

Se muestra el interior de una estación de llenado de una tienda de buceo, con una gran cantidad de cilindros colocados en el piso o en estantes de pared. El panel de llenado está a la derecha y los cilindros que se están llenando descansan sobre un estante en ángulo debajo del panel.
Estación de llenado de equipos de buceo de la tienda de buceo
Un pequeño compresor de alta presión montado sobre un marco de acero con un motor eléctrico trifásico como fuente de energía. Una manguera de entrada de aire de plástico flexible proporciona aire fresco desde el exterior del edificio.
Instalación de compresor HP estacionario de pequeña capacidad

Los cilindros de buceo se llenan conectando un suministro de gas a alta presión a la válvula del cilindro, abriendo la válvula y permitiendo que el gas fluya hacia el cilindro hasta que se alcance la presión deseada, luego cerrando las válvulas, ventilando la conexión y desconectándola. Este proceso implica un riesgo de que el cilindro o el equipo de llenado fallen bajo presión, ambos son peligrosos para el operador, por lo que generalmente se siguen procedimientos para controlar estos riesgos. La velocidad de llenado debe limitarse para evitar un calentamiento excesivo, la temperatura del cilindro y el contenido debe permanecer por debajo de la temperatura máxima de trabajo especificada por la norma aplicable. [47] Una manguera flexible de alta presión utilizada para este propósito se conoce como látigo de llenado. [85]

Inspección previa al llenado y registro de detalles

Antes de llenar un cilindro, el operador puede estar obligado por reglamentos, códigos de prácticas o manuales de operaciones a inspeccionar el cilindro y la válvula para detectar defectos o daños externos evidentes y a rechazar el llenado de cualquier cilindro que no cumpla con las normas. También puede estar obligado a registrar los detalles del cilindro en el registro de llenado. [47]

Llenado desde un compresor

El suministro de aire respirable puede provenir directamente de un compresor de aire respirable de alta presión, de un sistema de almacenamiento de alta presión o de un sistema de almacenamiento combinado con compresor. La carga directa consume mucha energía y la velocidad de carga estará limitada por la fuente de energía disponible y la capacidad del compresor. Un banco de gran volumen de cilindros de almacenamiento de alta presión permite una carga más rápida o la carga simultánea de varios cilindros, y permite el suministro de aire de alta presión más económico al recargar los bancos de almacenamiento desde un compresor de baja potencia o utilizando energía eléctrica de menor costo fuera de horas pico .

La calidad del aire respirable comprimido para el buceo suele estar especificada por normas nacionales u organizacionales, y las medidas que generalmente se adoptan para garantizar la calidad del aire incluyen: [86]

Llenado desde almacenamiento de alta presión

Los cilindros también se pueden llenar directamente desde sistemas de almacenamiento de alta presión mediante decantación, con o sin aumento de presión para alcanzar la presión de carga deseada. Se puede utilizar el llenado en cascada para lograr eficiencia cuando se dispone de varios cilindros de almacenamiento. El almacenamiento a alta presión se utiliza comúnmente cuando se mezclan gases de buceo nitrox , heliox y trimix , y para oxígeno para rebreathers y gas de descompresión. [87]

La mezcla de nitrox y trimix puede incluir la decantación del oxígeno y/o helio y la recarga hasta la presión de trabajo utilizando un compresor, después de lo cual se debe analizar la mezcla de gases y etiquetar el cilindro con la composición del gas. [87]

Cambio de temperatura durante el llenado

La compresión del aire ambiente provoca un aumento de la temperatura del gas, proporcional al aumento de la presión. El aire ambiente se comprime normalmente en etapas y la temperatura del gas aumenta durante cada etapa. Los intercoolers y los intercambiadores de calor de refrigeración por agua pueden eliminar este calor entre etapas.

Cargar un cilindro de buceo vacío también provoca un aumento de temperatura a medida que el gas dentro del cilindro se comprime por la entrada de gas a mayor presión, aunque este aumento de temperatura puede ser moderado inicialmente porque el gas comprimido de un banco de almacenamiento a temperatura ambiente disminuye su temperatura cuando disminuye su presión, por lo que al principio el cilindro vacío se carga con gas frío, pero luego la temperatura del gas en el cilindro aumenta por encima de la ambiente a medida que el cilindro se llena hasta la presión de trabajo.

Llenado húmedo: el exceso de calor se puede eliminar sumergiendo el cilindro en un baño de agua fría durante el llenado. Sin embargo, la inmersión para enfriar también puede aumentar el riesgo de que el agua contamine el orificio de la válvula de un tanque completamente despresurizado y entre en el cilindro durante el llenado. [88]

Llenado en seco: Los cilindros también pueden llenarse sin enfriamiento por baño de agua y pueden cargarse por encima de la presión de trabajo nominal hasta la presión desarrollada apropiada para la temperatura cuando se llenan. A medida que el gas se enfría a temperatura ambiente, la presión disminuye y alcanzará la presión de carga nominal a la temperatura nominal. [88]

Cuestiones legales y de seguridad

Las restricciones legales para llenar los cilindros de buceo varían según la jurisdicción.

En Sudáfrica, los cilindros pueden ser llenados con fines comerciales por una persona que sea competente en el uso del equipo de llenado que se va a utilizar, que conozca las secciones pertinentes de las normas y reglamentos aplicables y que tenga permiso por escrito del propietario del cilindro para llenarlo. El cilindro debe estar en condiciones de prueba y ser adecuado para el gas que se va a llenar, y no puede llenarse por encima de la presión desarrollada para la temperatura alcanzada cuando se llena. Se debe realizar una inspección externa del cilindro y deben registrarse detalles específicos del cilindro y del llenado. Si el llenado es de un gas distinto del aire, el llenador debe registrar el análisis del llenado completado y debe ser firmado por el cliente. [47] Si la presión residual en un cilindro presentado para llenado no produce una salida razonablemente fuerte de gas de la válvula cuando se abre, el llenador puede negarse a llenar el cilindro a menos que se dé una razón aceptable para que esté vacío, ya que no hay forma de que el llenador verifique si ha sido contaminado.

Pureza y pruebas de gas

Los cilindros de buceo solo deben llenarse con aire adecuadamente filtrado de compresores de aire de buceo o con otros gases respirables utilizando técnicas de mezcla o decantación de gases . [86] En algunas jurisdicciones, la legislación exige que los proveedores de gases respirables prueben periódicamente la calidad del aire comprimido producido por sus equipos y muestren los resultados de las pruebas para información pública. [47] Las normas sobre pureza de gases industriales y equipos y procedimientos de llenado pueden permitir algunos contaminantes en niveles inseguros para la respiración, [42] y su uso en mezclas de gases respirables a alta presión podría ser dañino o fatal.

Manipulación de gases especiales

Se deben tomar precauciones especiales con gases distintos del aire:

La carga de gases especiales mezclados casi siempre implicará el suministro de cilindros de gas de alta pureza provenientes de un proveedor de gas industrial. El oxígeno y el helio deben almacenarse, mezclarse y comprimirse en espacios bien ventilados. El oxígeno, porque cualquier fuga podría constituir un peligro de incendio, y el helio, porque es asfixiante . El cuerpo humano no puede identificar ninguno de estos gases sin ayuda.

Contaminación por gas

El gas respirable contaminado a gran profundidad puede ser mortal. Las concentraciones que son aceptables a la presión ambiental de la superficie aumentarán con la presión de la profundidad y pueden superar los límites aceptables o tolerables. Los contaminantes más comunes son: monóxido de carbono (un subproducto de la combustión), dióxido de carbono (un producto del metabolismo) y aceite y lubricantes del compresor. [86]

Mantener el cilindro ligeramente presurizado en todo momento durante el almacenamiento y el transporte reduce la posibilidad de contaminar inadvertidamente el interior del cilindro con agentes corrosivos, como agua de mar, o material tóxico, como aceites, gases venenosos, hongos o bacterias. [44] Una inmersión normal terminará con algo de presión restante en el cilindro; si se ha realizado un ascenso de emergencia debido a un incidente de falta de gas, el cilindro normalmente todavía contendrá algo de presión y, a menos que el cilindro haya estado sumergido más profundamente que donde se usó el último gas, no es posible que entre agua durante la inmersión.

La contaminación por agua durante el llenado puede deberse a dos causas. Una filtración y un secado inadecuados del aire comprimido pueden introducir pequeñas cantidades de condensado de agua dulce o una emulsión de agua y lubricante del compresor, y no limpiar el orificio de la válvula del cilindro del agua que puede haber goteado del equipo de buceo mojado, lo que puede permitir la contaminación por agua dulce o salada. Ambas causas causan corrosión, pero la contaminación por agua salada puede hacer que un cilindro se corroa rápidamente hasta el punto de que puede resultar inseguro o ser desechado incluso después de un período relativamente corto. Este problema se agrava en climas cálidos, donde las reacciones químicas son más rápidas, y es más frecuente cuando el personal de llenado está mal capacitado o tiene exceso de trabajo. [89]

Fallas catastróficas durante el llenado

La explosión causada por una liberación repentina de la presión de gas dentro de un cilindro de buceo los hace muy peligrosos si se manejan mal. El mayor riesgo de explosión existe durante el llenado, [90] pero también se sabe que los cilindros explotan cuando se sobrecalientan. [91] La causa de la falla puede variar desde un espesor de pared reducido o picaduras profundas debido a la corrosión interna, falla de la rosca del cuello debido a roscas de válvula incompatibles o agrietamiento debido a fatiga, tensiones altas sostenidas o efectos de sobrecalentamiento en aluminio. [44] [92] La explosión del tanque debido a la sobrepresión se puede prevenir con un disco de ruptura de alivio de presión instalado en la válvula del cilindro, que explota si el cilindro está sobrepresurizado y ventila el aire a un ritmo rápido y controlado para evitar una falla catastrófica del tanque. La ruptura accidental del disco de ruptura también puede ocurrir durante el llenado, debido al debilitamiento corrosivo o la tensión de los ciclos de presurización repetidos, pero se remedia reemplazando el disco. Los discos de ruptura no son obligatorios en todas las jurisdicciones. [47]

Otros modos de falla que son un peligro durante el llenado incluyen la falla de la rosca de la válvula, que puede hacer que la válvula se salga del cuello del cilindro, y la falla del látigo de llenado. [35] [36] [37] [38]

Inspección y prueba periódica de cilindros de buceo

Una pila de cilindros de buceo rechazados y algo oxidados tirados en un patio.
Cilindros de buceo desechados destinados al reciclaje de metales

La mayoría de los países exigen que los cilindros de buceo se revisen periódicamente. Esto suele consistir en una inspección visual interna y una prueba hidrostática. Los requisitos de inspección y prueba para los cilindros de buceo pueden ser muy diferentes de los requisitos para otros contenedores de gas comprimido debido al entorno más corrosivo. [47]

Dibujo esquemático en corte del equipo de prueba hidrostática de la camisa de agua
Diagrama de prueba hidrostática de la camisa de agua

Una prueba hidrostática implica presurizar el cilindro a su presión de prueba (generalmente 5/3 o 3/2 de la presión de trabajo) y medir su volumen antes y después de la prueba. Un aumento permanente del volumen por encima del nivel tolerado significa que el cilindro no pasa la prueba y debe retirarse de servicio de forma permanente. [5]

Una inspección incluye una inspección externa e interna para detectar daños, corrosión y el color y las marcas correctos. Los criterios de falla varían según las normas publicadas por la autoridad pertinente, pero pueden incluir la inspección de abultamientos, sobrecalentamiento, abolladuras, ranuras, cicatrices de arco eléctrico, picaduras, corrosión de las líneas, corrosión general, grietas, daños en las roscas, desfiguración de las marcas permanentes y codificación por colores. [5] [47] Muy pocos cilindros no pasan la prueba hidrostática. Casi todos los cilindros que fallan lo hacen según los criterios de inspección visual. [91]

When a cylinder is manufactured, its specification, including manufacturer, working pressure, test pressure, date of manufacture, capacity and weight are stamped on the cylinder.[27] After a cylinder passes the test, the test date, (or the test expiry date in some countries such as Germany), is punched into the shoulder of the cylinder for easy verification at fill time. [note 1] The international standard for the stamp format is ISO 13769, Gas cylinders - Stamp marking.[27]

Filling station operators may be required to check these details before filling the cylinder and may refuse to fill non-standard or out-of-test cylinders. [note 2]

Intervals between inspections and tests

A cylinder is due to be inspected and tested at the first time it is to be filled after the expiry of the interval as specified by the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations, or as specified by national or international standards applicable in the region of use.[93][94]

Procedures for periodic inspections and tests

Blowdown silencer for scuba cylinders

If a cylinder passes the listed procedures, but the condition remains doubtful, further tests can be applied to ensure that the cylinder is fit for use. Cylinders that fail the tests or inspection and cannot be fixed should be rendered unserviceable after notifying the owner of the reason for failure.[99][100]

Before starting work the cylinder must be identified from the labelling and permanent stamp markings, and the ownership and contents verified,[101][102] and the valve must be removed after depressurising and verifying that the valve is open. Cylinders containing breathing gases do not need special precautions for discharge except that high oxygen fraction gases should not be released in an enclosed space because of the fire hazard. [103][104] Before inspection the cylinder must be clean and free of loose coatings, corrosion products and other materials which may obscure the surface.[105]

The cylinder is inspected externally for dents, cracks, gouges, cuts, bulges, laminations and excessive wear, heat damage, torch or electric arc burns, corrosion damage, illegible, incorrect or unauthorised permanent stamp markings, and unauthorised additions or modifications.[106][107] Unless the cylinder walls are examined by ultrasonic methods, the interior must be visually inspected using sufficient illumination to identify any damage and defects, particularly corrosion. If the inner surface is not clearly visible it should first be cleaned by an approved method which does not remove a significant amount of wall material.[108][109] When there is uncertainty whether a defect found during visual inspection meets the rejection criteria, additional tests may be applied, such as ultrasonic measurement of pitting wall thickness, or weight checks to establish total weight lost to corrosion.[110]

While the valve is off, the threads of cylinder and valve are checked to identify the thread type and condition. The threads of cylinder and valve must be of matching thread specification, clean and full form, undamaged and free of cracks, burrs and other imperfections.[111][112] Ultrasonic inspection may be substituted for the pressure test, which is usually a hydrostatic test and may be either a proof test or a volumetric expansion test, depending on the cylinder design specification. Test pressure is specified in the stamp markings of the cylinder.[113][114] Valves that are to be reused are inspected and maintained to ensure they remain fit for service.[115][116] Before fitting the valve the thread type must be checked to ensure that a valve with matching thread specification is fitted.[117]

After the tests have been satisfactorily completed, a cylinder passing the test will be marked accordingly. Stamp marking will include the registered mark of the inspection facility and the date of testing (month and year).[118][119] Records of a periodic inspection and test are made by the test station and kept available for inspection. [120][121] If a cylinder fails inspection or testing and cannot be recovered, the owner must be notified before making the empty cylinder unserviceable.[122]

Cleaning

Internal cleaning of diving cylinders may be required to remove contaminants or to allow effective visual inspection. Cleaning methods should remove contaminants and corrosion products without undue removal of structural metal. Chemical cleaning using solvents, detergents and pickling agents may be used depending on the contaminant and cylinder material. Tumbling with abrasive media may be needed for heavy contamination, particularly of heavy corrosion products.[123][124]

External cleaning may also be required to remove contaminants, corrosion products or old paint or other coatings. Methods which remove the minimum amount of structural material are indicated. Solvents, detergents and bead blasting are generally used. Removal of coatings by the application of heat may render the cylinder unserviceable by affecting the crystalline microstructure of the metal. This is a particular hazard for aluminium alloy cylinders, which may not be exposed to temperatures above those stipulated by the manufacturer.[citation needed]

Service life

The service life of steel and aluminium diving cylinders is limited by the cylinder continuing to pass visual inspection and hydrostatic tests. There is no expiry date based on age, length of service or number of fills.[91]

Safety

Before any cylinder is filled, verification of inspection and testing dates and a visual examination for external damage and corrosion are required by law in some jurisdictions,[47] and are prudent even if not legally required. Inspection dates can be checked by looking at the visual inspection label and the hydrostatic test date is stamped on the shoulder of the cylinder.[47]

Before use the user should verify the contents of the cylinder and check the function of the cylinder valve. This is usually done with a regulator connected to control the flow. Pressure and gas mixture are critical information for the diver, and the valve should open freely without sticking or leaking from the spindle seals. Failure to recognize that the cylinder valve was not opened or that a cylinder was empty has been observed in divers conducting a pre-dive check.[125] Breathing gas bled from a cylinder may be checked for smell. If the gas does not smell right it should not be used. Breathing gas should be almost free of smell, though a very slight aroma of the compressor lubricant is fairly common. No smell of combustion products or volatile hydrocarbons should be discernible.[42]

A neatly assembled setup, with regulators, gauges, and delicate computers stowed inside the BCD, or clipped where they will not be walked on, and stowed under the boat bench or secured to a rack, is the practice of a competent diver.

As the scuba set is a life support system, no unauthorised person should touch a diver's assembled scuba gear, even to move it, without their knowledge and approval.

Full cylinders should not be exposed to temperatures above 65 °C[47] and cylinders should not be filled to pressures greater than the developed pressure appropriate to the certified working pressure of the cylinder.[47]

Cylinders should be clearly labelled with their current contents. A generic "Nitrox", "Heliox", or "Trimix" label will alert the user that the contents may not be air, and must be analysed before use. A nitrox label requires analysis of oxygen fraction, and assumes that the rest is nitrogen, and a trimix label requires analysis of both oxygen and helium fractions for full information for decompression. In some parts of the world a label is required specifically indicating that the contents are air, and in other places a colour code without additional labels indicates by default that the contents are air.[47] In other places the default assumption is that the contents of any cylinder with a scuba cylinder valve are air, regardless of cylinder colour, unless specifically labelled to indicate other contents.

In a fire, the pressure in a gas cylinder rises in direct proportion to its absolute temperature. If the internal pressure exceeds the mechanical limitations of the cylinder and there are no means to safely vent the pressurized gas to the atmosphere, the vessel will fail mechanically. If the vessel contents are ignitable or a contaminant is present this event may result in an explosion.[126]

Accidents

The major diving accident and fatality research studies that have been conducted globally including work by the Divers Alert Network, the Diving Incident Monitoring Study, and Project Stickybeak have each identified cases where the mortality was associated with the diving cylinder.[127][128]

Some recorded accidents associated with diving cylinders:

Cases of lateral epicondylitis have been reported caused by the handling of diving cylinders.[132]

Handling

Cylinders should not be left standing unattended unless secured[47] so that they can not fall in reasonably foreseeable circumstances as an impact could damage the cylinder valve mechanism, and conceivably fracture the valve at the neck threads. This is more likely with taper thread valves, and when it happens most of the energy of the compressed gas is released within a second, and can accelerate the cylinder to speeds which can cause severe injury or damage to the surroundings.[42][133]

Long-term storage

Breathing quality gases do not normally deteriorate during storage in steel or aluminum cylinders. Provided there is insufficient water content to promote internal corrosion, the stored gas will remain unchanged for years if stored at temperatures within the allowed working range for the cylinder, usually below 65 °C. If there is any doubt, a check of oxygen fraction will indicate whether the gas has changed (the other components are inert). Any unusual smells would be an indication that the cylinder or gas was contaminated at the time of filling. However some authorities recommend releasing most of the contents and storing cylinders with a small positive pressure.[134]

Aluminum cylinders have a low tolerance for heat, and a 3,000 pounds per square inch (210 bar) cylinder containing less than 1,500 pounds per square inch (100 bar) may lose sufficient strength in a fire to explode before the internal pressure rises enough to rupture the bursting disc, so storing aluminum cylinders with a bursting disc has a lower explosion risk in case of fire if stored either full or nearly empty.[135]

Transportation

Diving cylinders are classified by the UN as dangerous goods for transportation purposes (US: Hazardous materials). Selecting the Proper Shipping Name (well known by the abbreviation PSN) is a way to help ensure that the dangerous goods offered for transport accurately represent the hazards.[136]

IATA Dangerous Goods Regulations (DGR) 55th Edition defines the Proper Shipping Name as "the name to be used to describe a particular article or substance in all shipping documents and notifications and, where appropriate, on packagings".[136]

The International Maritime Dangerous Goods Code (IMDG Code) defines the Proper Shipping Name as "that portion of the entry most accurately describing the goods in the Dangerous Goods List which is shown in upper-case characters (plus any letters which form an integral part of the name)."[136]

International air

International Civil Aviation Organization (ICAO) Technical Instructions for the Safe Transport of Dangerous Goods by Air states that provided that pressure in diving cylinders is less than 200 kilopascals (2 bar; 29 psi), these can be carried as checked in or carry-on baggage. It maybe necessary to empty the cylinder to verify this. Once emptied, the cylinder valve should be closed to prevent moisture entering the cylinder. Security restrictions implemented by individual countries may further limit or forbid the carriage of some items permitted by ICAO, and airlines and security screening agencies have the right to refuse the carriage of certain items.[140]

Europe

Since 1996 the carriage of dangerous goods legislation of the UK has been harmonized with that of Europe.[141]

Road transport

The 2009 (amended 2011) UK Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations (CDG Regulations) implement the European Agreement Concerning the International Carriage of Dangerous Goods by Road (ADR). Dangerous goods to be carried internationally in road vehicles must comply with standards for the packaging and labelling of the dangerous goods, and appropriate construction and operating standards for the vehicles and crew.[138][141]

The regulations cover transportation of gas cylinders in a vehicle in a commercial environment. Transportation of pressurised diving gas cylinders with a combined water capacity of less than 1000 litres on a vehicle for personal use is exempt from ADR.[138][141][142]

Transport of gas cylinders in a vehicle, for commercial purposes, must follow basic legal safety requirements and, unless specifically exempted, must comply with ADR. The driver of the vehicle is legally responsible for the safety of the vehicle and any load being carried, and insurance for the vehicle should include cover for the carriage of dangerous goods.[138][141]

Diving gases, including compressed air, oxygen, nitrox, heliox, trimix, helium and argon, are non-toxic, non flammable, and may be oxidizer or asphyxiant, and are rated in Transport category 3.[141]The threshold quantity for these gases is 1000 litres combined water capacity of the cylinders. Pressure must be within the rated working pressure of the cylinder. Empty air cylinders at atmospheric pressure are rated in Transport category 4, and there is no threshold quantity.[138][141]

Commercial loads below the 1000 litres threshold level are exempt from some of the requirements of ADR, but must comply with basic legal and safety requirements, including:[141]

All loads above the threshold must comply with the full requirements of ADR.[138][141]

United States

Transportation of hazardous materials for commercial purposes[143] in the USA is regulated by Code of Federal Regulations Title 49 - Transportation, (abbreviated 49 CFR).[144] A cylinder containing 200 kPa (29.0 psig/43.8 psia) or greater at 20 °C (68 °F) of non-flammable, nonpoisonous compressed gas, and being transported for commercial purposes is classified as HAZMAT (hazardous materials) in terms of 49 CFR 173.115(b) (1).[145] Cylinders manufactured to DOT standards or special permits (exemptions)issued by the Pipeline and Hazardous Materials Safety Administration and filled to the authorized working pressure are legal for commercial transport in the USA under the provisions and conditions of the regulations.[144][146] Cylinders manufactured outside the USA may be transported under a special permit, and these have been issued for solid metal and composite cylinders with working pressures of up to 300 bar (4400 psi) by several manufacturers.

Surface transport

Commercial transportation of breathing gas cylinders with a combined weight of more than 1000 pounds may only be done by a commercial HAZMAT transportation company. Transport of cylinders with a combined weight of less than 1000 pounds requires a manifest, the cylinders must have been tested and inspected to federal standards, and the contents marked on each cylinder. Transportation must be done in a safe manner, with the cylinders restrained from movement. No special licence is required. DOT regulations require content labels for all cylinders under the regulations, but according to PSI, labelling of breathing air will not be enforced. Oxygen or non-air oxidizing (O2 ≥ 23.5% ) mixtures must be labelled. Private (non-commercial) transport of scuba cylinders is not covered by this regulation.[147]

Air transport

Empty scuba tanks or scuba tanks pressurized at less than 200 kPa are not restricted as hazardous materials.[148] Scuba cylinders are only allowed in checked baggage or as a carry-on if the cylinder valve is completely disconnected from the cylinder and the cylinder has an open end to allow for a visual inspection inside.[149]

Surface finish, colour-coding and labeling

La etiqueta plástica adhesiva blanca muestra el nombre del gas, oxígeno, y el símbolo químico O2 con un bloque de texto pequeño en el lado izquierdo que describe los peligros del contenido, luego un símbolo de diamante verde para gas comprimido y un diamante amarillo para agente oxidante.
A contents label for oxygen usage (UK), which incorporates the hazardous materials diamonds for compressed gas (green) and oxidizer (yellow)
Dos bombonas se encuentran una al lado de la otra. A la izquierda, una bombona de acero de 15 litros con fondo redondo y funda de plástico, y a la derecha, una bombona de aluminio de 12,2 litros con fondo plano y sin funda. Ambas bombonas tienen el mismo diámetro exterior (203 mm), pero la bombona de aluminio de menor volumen es ligeramente más alta que la de acero de mayor volumen, a pesar de que esta última se encuentra sobre una funda y tiene el fondo redondeado.
A steel 15-litre cylinder with net and boot and a bare 12-litre aluminium cylinder. Both are labeled for Nitrox use. The aluminium cylinder also displays a triangular label specifying the date of the most recent internal inspection and an oval label recording the most recent neck thread eddy current test.

Aluminium cylinders may be marketed with an external paint coating, a low temperature powder coating,[150] plain or coloured anodised finish, bead-blasted matt finish,[150] brushed finish,[150] or mill finish (no surface treatment).[150] The material is inherently fairly corrosion resistant if kept clean and dry between uses. Coatings are generally for cosmetic purposes or for legal colour coding requirements.[47]

Steel cylinders are more sensitive to corrosion when wet, and are usually coated to protect against corrosion. The usual finishes include hot-dip galvanisation,[151] zinc-spray,[151] and heavy duty paint systems.[151] Paint may be applied over zinc coatings for cosmetic purposes or color coding.[151] Steel cylinders without anti-corrosion coatings rely on the paint to protect against rusting, and when the paint is damaged, they will rust on the exposed areas. This can be prevented or delayed by repair of the painted finish.

Worldwide

The colours permitted for diving cylinders vary considerably by region, and to some extent by the gas mixture contained. In some parts of the world there is no legislation controlling the colour of diving cylinders. In other regions the colour of cylinders used for commercial diving, or for all underwater diving may be specified by national standards.[47]

In many recreational diving settings where air and nitrox are the widely used gases, nitrox cylinders are identified with a green stripe on yellow background. Aluminium diving cylinders may be painted or anodized and when anodized may be coloured or left in their natural silver. Steel diving cylinders are usually painted, to reduce corrosion, often yellow or white to increase visibility. In some industrial cylinder identification colour tables, yellow shoulders means chlorine and more generally within Europe it refers to cylinders with toxic and/or corrosive contents; but this is of no significance in scuba since gas fittings would not be compatible.

Cylinders that are used for partial pressure gas blending with pure oxygen may also be required to display an "oxygen service certificate" label indicating they have been prepared for use with high partial pressures and gas fractions of oxygen.

European Union

A white plastic adhesive label on a cylinder labeled for Enriched air-Nitrox. There is a smaller label above it on the shoulder indicating the mix proportions - 36% Oxygen, and the Maximum operating depth - 28m
Nitrox contents and hazard label used in the UK. The diver has added a temporary maximum operating depth (MOD) indication for easy reference.

In the European Union gas cylinders may be colour-coded according to EN 1098-3. In the UK this standard is optional. The "shoulder" is the domed top of the cylinder between the parallel section and the pillar valve. For mixed gases, the colours can be either bands or "quarters".[152]

These breathing gas cylinders must also be labeled with their contents. The label should state the type of breathing gas contained by the cylinder.[152]

Offshore

Breathing gas containers for offshore use may be coded and marked according to IMCA D043.[152][153] IMCA colour coding for individual cylinders allows the body of the cylinder to be any colour that is not likely to cause misinterpretation of the hazard identified by the colour code of the shoulder.

South Africa

Scuba cylinders are required to comply with the colours and markings specified in the current revision of SANS 10019.[47] This requirement applies where the cylinders will be filled or used in any situation where the Occupational Health and Safety Act, 1993 applies.

Manufacturers

Cylinder manufacturers identify their products using their registered stamp marking on the cylinder shoulder.[154]

Steel cylinders:

Aluminium cylinders:

See also

Notes

  1. ^ This is a European requirement.
  2. ^ This is a European requirement, a requirement of the US DOT, and a South African occupational health and safety requirement.

References

  1. ^ NOAA Diving Manual 2001, Section 3.3.3.3 Oxygen toxicity.
  2. ^ Secretariat - Association of Commercial Diving Educators (2015). "Section 3.2 (c)". ANSI/ACDE-01-2015 Commercial Diver Training – Minimum Standards (PDF). New York, NY.: American National Standards Institute. p. 4. Archived (PDF) from the original on 20 May 2017. Retrieved 12 March 2017.
  3. ^ Staff (2014). "Aqua Lung UK". Paris, France: Aqua Lung International. Archived from the original on 28 September 2015. Retrieved 9 October 2015.
  4. ^ "Decompression, Stage, and Bailout Cylinders". www.dansa.org. 2 January 2023. Archived from the original on 5 October 2023. Retrieved 24 April 2024.
  5. ^ a b c d e f NOAA Diving Manual 2001, Section 5.7 Compressed gas cylinders.
  6. ^ Stone, W.C. (1986). "Design of fully redundant autonomous life support systems". In: Mitchell, CT (Eds.) Diving for Science 86. Proceedings of the American Academy of Underwater Sciences Sixth Annual Scientific Diving Symposium. Dauphin Island, Alabama: American Academy of Underwater Sciences.
  7. ^ Staff. "History of Stone Aerospace". Austin, Texas: Stone Aerospace. Archived from the original on 1 July 2017. Retrieved 13 November 2016.
  8. ^ "CFR Title 49: Transportation". §173.301b Additional general requirements for shipment of UN pressure receptacles. (g) Composite cylinders in underwater use. Washington, DC: US Department of Transport. Archived from the original on 20 December 2015. Retrieved 21 January 2016.
  9. ^ Staff. "Catalina aluminium cylinders" (PDF). Catalogue. Xscuba.com. Archived from the original (PDF) on 18 October 2011. Retrieved 25 December 2015.
  10. ^ "Sustained-load cracking (SLC) in ruptured scuba cylinder made from 6351 aluminum alloy". Salford, Greater Manchester, UK: The Luxfer Group. 22 October 2007. Archived from the original on 17 June 2015. Retrieved 9 October 2015.
  11. ^ High, Bill (23 February 2005). "Cracking and Ruptures of SCBA and SCUBA Aluminum Cylinders Made from 6351 Alloy" (PDF). Honolulu: University of Hawai'i. Archived from the original (PDF) on 26 December 2015. Retrieved 9 October 2015.
  12. ^ Gresham, Mark A. (2017). "Are 6351-T6 Alloy Scuba Cylinders Safe to Use?". Alert Diver (Q4 Fall 2017). Divers Alert Network. Archived from the original on 9 October 2018. Retrieved 8 October 2018.
  13. ^ Staff (2015). "Manufacturing processes: All-aluminum cylinders". Salford, UK: Luxfer Gas Cylinders, Luxfer Holdings PLC. Archived from the original on 25 December 2015. Retrieved 25 December 2015.
  14. ^ Staff (19 October 2006). "A Consumer's Guide to Scuba Tanks". scubadiving.com. Winter Park, Florida: Scuba Diving. A Bonnier Corporation Company. Archived from the original on 10 December 2015. Retrieved 6 January 2016.
  15. ^ webStaff. "About Faber High Pressure Steel Tank". Leisurepro diver emporium. Retrieved 6 January 2016.
  16. ^ Staff. "12L Concave Euro Cylinder with Left or Right Hand Valve". DirDirect Worldwide product catalog. Portland, UK: Underwater Explorers Ltd. Archived from the original on 1 June 2016. Retrieved 16 January 2016.
  17. ^ a b Roberts, Fred M. (1963). Basic Scuba: Self contained underwater breathing apparatus: Its operation, maintenance and use (2nd ed.). New York: Van Nostrand Reinholdt.
  18. ^ "49 CFR 178.37 - Specification 3AA and 3AAX seamless steel cylinders. (DOT 3AA)". Washington, DC: US Department of Transport. Archived from the original on 2 February 2016. Retrieved 7 December 2015 – via Legal Information Institute.
  19. ^ Worthington steel. "Making a Worthington X-Series Steel Scuba Cylinder". YouTube. Archived from the original on 18 November 2021.
  20. ^ "Vítkovice Cylinders". www.vitkovice.az. Archived from the original on 1 August 2021. Retrieved 1 April 2021.
  21. ^ Technical Committee 58 Gas cylinders (25 March 1999). ISO 11116-1: Gas cylinders - 17E taper thread for connection of valves to gas cylinders (First ed.). Geneva, Switzerland: International Standards Organization.
  22. ^ a b c Technical Committee ISO/TC 58, Gas cylinders (15 October 1997). ISO 13341:1997 Transportable gas cylinders - Fitting of valves to gas cylinders (1st ed.). Geneva, Switzerland: International Standards Organisation.
  23. ^ Committee MCE/18 (1986). Specification for pipe threads for tubes and fittings where pressure-tight joints are not made on the threads (metric dimensions). British Standard 2779 (Report). London: British Standards Institution. ISBN 0-580-15212-X.
  24. ^ Metal Cutting Tool Institute (1989). "Tap and Die section: American Standard Gas Cylinder Valve Threads". Metal Cutting Tool Handbook (illustrated ed.). Industrial Press Inc. p. 447. ISBN 9780831111779. Archived from the original on 18 April 2023. Retrieved 7 December 2016.
  25. ^ a b Staff. "Valving of SCUBA (Air) Cylinders". Support documents. Garden Grove, California: Catalina Cylinders. Archived from the original on 14 November 2016. Retrieved 13 November 2016.
  26. ^ Staff. "Luxfer Limited 106". Catalog. XS Scuba. Archived from the original on 9 August 2016. Retrieved 7 August 2016.
  27. ^ a b c d e Technical Committee ISO/TC 58, Gas cylinders, Subcommittee SC 4 (1 July 2002). "Gas cylinders — Stamp marking". ISO 13769 (first ed.). Geneva, Switzerland: International Standards Organisation. Archived from the original on 9 November 2016. Retrieved 8 November 2016.
  28. ^ "Advanced Open Water Diver Course - Standard Scuba Tank Features". Rancho Santa Margarita, California: PADI. 2016. Archived from the original on 27 January 2016. Retrieved 16 January 2016.
  29. ^ a b c Harlow, Vance (1999). Scuba regulator maintenance and repair. Warner, New Hampshire: Airspeed press. ISBN 0-9678873-0-5.
  30. ^ Barsky, Steven; Neuman, Tom (2003). Investigating Recreational and Commercial Diving Accidents. Santa Barbara, California: Hammerhead Press. ISBN 0-9674305-3-4.
  31. ^ Staff. "San-o-Sub DIN/K Cylinder Valve - 232 bar". Melbourne, Victoria: The Scuba Doctor. Archived from the original on 4 March 2016. Retrieved 6 January 2016.
  32. ^ "High pressure cylinder valves" (PDF). Cavagna group, Ponte S. Marco di Calcinato, Italy. Archived (PDF) from the original on 9 February 2018. Retrieved 9 February 2018.
  33. ^ "Apeks Left and Right hand Cylinder Valve". Products. Blackburn, United Kingdom: Apeks Marine Equipment. Archived from the original on 8 November 2016. Retrieved 16 January 2016.
  34. ^ Dowding, Scott (2003). The Recreational Diver's Dictionary & Historical Timeline. Bloomington, Indiana: iUniverse. ISBN 9780595294688.
  35. ^ a b "Diver injury during air cylinder recharging". International Marine Contractors Association. 18 December 2014. Archived from the original on 26 January 2019. Retrieved 28 July 2010. M25x2 valve, cylinder had a Whitworth imperial thread of 1 inch (25.4 mm)
  36. ^ a b "Injuries due to failure of diver's emergency gas cylinder". International Marine Contractors Association. 18 December 2014. Archived from the original on 26 January 2019. Retrieved 25 January 2019. M25x2 valve in 3/4"x14tpi cylinder
  37. ^ a b "Injuries due to failure of divers emergency gas cylinder – use of incompatible threads". International Marine Contractors Association. 7 January 2016. Archived from the original on 26 January 2019. Retrieved 25 January 2019. M25x2 cylinder, 3/4″x14 BSP valve
  38. ^ a b c Transcript of the court records of Inquest No. 96/2015. Cape Town: Magistrates court for the district of the Cape. 30 November 2015.
  39. ^ Barker, Jim (14 June 2002). Luxfer gas cylinders: Questions and answers from the technical seminars held in South Asia, Jan/Feb 2002 (Report). Luxfer Asia-Pacific.
  40. ^ a b US Navy Diving Manual 2006, Section 7-2.2 Open circuit scuba.
  41. ^ a b c d e f Gilliam, Bret C; Von Maier, Robert; Crea, John (1992). Deep diving: an advanced guide to physiology, procedures and systems. San Diego, California: Watersport Publishing, Inc. ISBN 0-922769-30-3. Archived from the original on 18 April 2023. Retrieved 10 January 2016.
  42. ^ a b c d e NOAA Diving Manual 2001, Section 5.5 Compressed air.
  43. ^ a b Jackson, Jack (2005). Complete Diving Manual. London: New Holland. ISBN 1-84330-870-3.
  44. ^ a b c Hendrick W, Zaferes A, Nelson C (2000). Public Safety Diving. Tulsa, Oklahoma: PennWell Books. ISBN 0912212942. Archived from the original on 4 March 2023. Retrieved 11 January 2016.
  45. ^ Staff. "DIN Valve Cover Plug - Machined Delrin". Melbourne, Victoria: The Scuba Doctor. Archived from the original on 18 April 2023. Retrieved 21 January 2016.
  46. ^ a b Staff. "How to select a SCUBA tank". www.divegearexpress.com. Pompano Beach, Florida: Dive Gear Express, LLC. Archived from the original on 15 April 2015. Retrieved 8 November 2016.
  47. ^ a b c d e f g h i j k l m n o p q r s t South African National Standard SANS 10019:2008 Transportable containers for compressed, dissolved and liquefied gases - Basic design, manufacture, use and maintenance (6th ed.). Pretoria, South Africa: Standards South Africa. 2008. ISBN 978-0-626-19228-0.
  48. ^ a b c d e Staff. "Faber cylinders for Scuba Diving". Catalog page for 15- to 22-litre steel cylinders. Cividale del Friuli, Italy: Faber Industrie S.p.A. Archived from the original on 31 January 2016. Retrieved 31 January 2016.
  49. ^ a b Staff. "Faber cylinders for Scuba Diving". Catalog page for 12- to 14.5-litre steel cylinders. Cividale del Friuli, Italy: Faber Industrie S.p.A. Archived from the original on 1 February 2016. Retrieved 31 January 2016.
  50. ^ Staff. "Faber cylinders for Scuba Diving". Catalog page for 9.5- to 11.9-litre steel cylinders. Cividale del Friuli, Italy: Faber Industrie S.p.A. Archived from the original on 1 February 2016. Retrieved 31 January 2016.
  51. ^ a b Staff. "Faber cylinders for Scuba Diving". Catalog page for 6-litre to 9.5-litre steel cylinders. Cividale del Friuli, Italy: Faber Industrie S.p.A. Archived from the original on 31 January 2016. Retrieved 31 January 2016.
  52. ^ a b c d e f Staff. "Faber cylinders for Scuba Diving". Catalog page for 1-litre to 5.5-litre steel cylinders. Cividale del Friuli, Italy: Faber Industrie S.p.A. Archived from the original on 31 January 2016. Retrieved 31 January 2016.
  53. ^ a b c d e Staff. "Scuba specifications" (PDF). Garden Grove, California: Catalina Cylinders Inc. Archived (PDF) from the original on 24 July 2015. Retrieved 31 January 2016.
  54. ^ Staff (2013). "Worthington steel cylinder specifications". XS Scuba. Archived from the original on 16 December 2005. Retrieved 8 November 2016.
  55. ^ "Steel cylinders". www.vitkovice.cz. Vítkovice Cylinders. Archived from the original on 22 April 2017. Retrieved 3 April 2021.
  56. ^ "New lighter design for Faber diving cylinders". faber-italy.com. 14 April 2023. Archived from the original on 4 July 2023. Retrieved 4 July 2023.
  57. ^ "Steel Cylinders for Scuba Diving". www.divefaber.com. Archived from the original on 1 March 2021. Retrieved 3 January 2021.
  58. ^ "Cylinders". Gas Diving UK. 26 January 2003. Archived from the original on 24 September 2015. Retrieved 9 October 2015.
  59. ^ US Navy Diving Manual 2006, Section 14-2.5 Emergency gas supply.
  60. ^ a b c d Beresford, M; Southwood, P (2006). CMAS-ISA Normoxic Trimix Manual (4th ed.). Pretoria, South Africa: CMAS Instructors South Africa.
  61. ^ "Rigging Stage Bottles… How to carry extra scuba tanks… and why". www.tdisdi.com. 17 June 2011. Archived from the original on 6 April 2023. Retrieved 15 June 2023.
  62. ^ a b NOAA Diving Manual 2001, Section 5.4 Emergency gas supply.
  63. ^ a b Lang, M.A.; Sayer, M.D.J., eds. (2007). Proceedings of the International Polar Diving Workshop. Svalbard: Smithsonian Institution.
  64. ^ "Spare Air". Huntington Beach, California: Submersible Systems. 7 July 2009. Archived from the original on 30 September 2009. Retrieved 19 September 2009.
  65. ^ a b Austin, Doug. "Extended endurance saturation diving emergency bailout system" (PDF). Divex. pp. 6–9. Archived from the original (PDF) on 26 June 2015. Retrieved 6 January 2016.
  66. ^ Bogaert, Steve (5 May 2011). "Multi Stage Dive by Steve Bogaerts with the new Razor Side Mount System". YouTube. Archived from the original on 18 November 2021. Retrieved 6 January 2016.
  67. ^ Davis, Andy. "What are the benefits of sidemount diving?". scubatechphilippines.com. Archived from the original on 27 June 2023. Retrieved 27 June 2023.
  68. ^ Davis, Andy. "Modern sidemount diving". scubatechphilippines.com. Archived from the original on 15 June 2023. Retrieved 15 June 2023.
  69. ^ a b "Are you ready for rebreathers?". Scuba Diving online magazine. Winter Park, Florida: Scuba Diving. A Bonnier Corporation Company. 19 October 2006. Archived from the original on 1 January 2016. Retrieved 6 January 2016.
  70. ^ a b c Verdier, C; Lee, DA (2008). "Motor skills learning and current bailout procedures in recreational rebreather diving". In: Verdier (Ed). Nitrox Rebreather Diving. DIRrebreather Publishing.
  71. ^ US Navy Diving Manual 2006, Chapter 8 Surface supplied air diving operations.
  72. ^ a b c "Diving Regulations 2009". Occupational Health and Safety Act 85 of 1993 - Regulations and Notices - Government Notice R41. Pretoria: Government Printer. Archived from the original on 4 November 2016. Retrieved 3 November 2016 – via Southern African Legal Information Institute.
  73. ^ a b c Staff (2002). Paul Williams (ed.). The Diving Supervisor's Manual (IMCA D 022 May 2000, incorporating the May 2002 erratum ed.). London, UK: International Marine Contractors' Association. ISBN 1-903513-00-6. Archived from the original on 12 August 2001. Retrieved 6 June 2015.
  74. ^ "Products:A.P.Valves MK4 Jump Jacket". Bergen op Zoom, Netherlands: Pommec diving equipment. Archived from the original on 4 March 2016. Retrieved 6 January 2016.
  75. ^ Staff (February 2014). "4.7.5 Emergency breathing gas cylinders for diving basket/wet bell". IMCA D014 International Code of Practice for Offshore Diving (PDF) (Revision 2 ed.). London, UK: International Marine Contractors Association. p. 19. Retrieved 30 January 2016.[permanent dead link]
  76. ^ Staff (July 2014). "Section 5 - Diving Bell: 5.23 - Onboard gas, and 5.24 - Onboard oxygen". IMCA D024 Rev 2 - Part 2 DESIGN for Saturation (Bell) Diving Systems (PDF) (Revision 2 ed.). London, UK: International Marine Contractors Association. pp. 4 of 10. Retrieved 30 January 2016.[permanent dead link]
  77. ^ Buzzacott, P.; Rosenberg, M.; Heyworth, J.; Pikora, T. (2011). "Risk factors for running low on gas in recreational divers in Western Australia". Diving and Hyperbaric Medicine. 41 (2). Melbourne, Victoria: SPUMS and EUBS: 85–9. PMID 21848111.
  78. ^ NOAA Diving Manual 2001, Section 3.2 Respiration and circulation.
  79. ^ British Sub-Aqua Club members (1982). British Sub-Aqua Club Diving Manual (10th ed.). Ellesmere Port, Cheshire: British Sub-Aqua Club. p. 567. ISBN 0950678619.
  80. ^ a b c NOAA Diving Manual 2001, Section 8.5 Air consumption rates.
  81. ^ NOAA Diving Manual 2001, Section 2.1 Pressure.
  82. ^ Bozanic, JE (1997). Norton, SF (ed.). "AAUS Standards for Scientific Diving Operations in Cave and Cavern Environments: A Proposal". Diving for Science...1997. Proceedings of the American Academy of Underwater Sciences (17th Annual Scientific Diving Symposium). Dauphin Island, Alabama: AAUS.
  83. ^ Sheldrake, S; Pedersen, R; Schulze, C; Donohue, S; Humphrey, A (2011). "Use of Tethered Scuba for Scientific Diving". In: Pollock NW, ed. Diving for Science 2011. Proceedings of the American Academy of Underwater Sciences 30th Symposium. Dauphin Island, Alabama: AAUS.
  84. ^ Technical Committee 20 - Aircraft and space vehicles (1 May 1975). ISO 2533:1975 Standard Atmosphere. Geneva, Switzerland: International Standards Organisation.
  85. ^ "Dive cylinder fill whips". www.worksafe.qld.gov.au. 29 October 2012. Archived from the original on 23 May 2022. Retrieved 23 March 2022.
  86. ^ a b c Millar, IL; Mouldey, PG (2008). "Compressed breathing air – the potential for evil from within". Diving and Hyperbaric Medicine. 38 (2). Melbourne, Victoria: South Pacific Underwater Medicine Society: 145–51. PMID 22692708.
  87. ^ a b c d e Harlow, Vance (2001). Oxygen Hacker's Companion (4th ed.). Warner, New Hampshire: Airspeed Press.
  88. ^ a b Calhoun, Fred. "The case for dry-filling scuba tanks" (PDF). The best of Sources: Equipment. pp. 146–149. Archived (PDF) from the original on 3 January 2017. Retrieved 8 November 2016.
  89. ^ Trigger, John (April 1999). "High Pressure Rusting: a Problem with High Pressure Steel Tanks?". Undercurrent. Sausalito, California: Undercurrent (www.undercurrent.org). Archived from the original on 17 August 2016. Retrieved 16 January 2016.
  90. ^ NOAA Diving Manual 2001, Section 5.6 Air compressors and filtering systems.
  91. ^ a b c High, Bill (28 October 1999). "Aluminium tanks - what every diver should know". www.luxfercylinders.com. Luxfer. Archived from the original on 29 November 2020. Retrieved 18 February 2021.
  92. ^ a b c d e Staff. "Scuba Cylinder Servicing and High Pressure Valve Support Pages". ScubaEngineer.com. Archived from the original on 14 January 2016. Retrieved 16 January 2016.
  93. ^ ISO 6406 2005, Section 3.
  94. ^ ISO 10461 2005, Section 3.
  95. ^ Henderson, NC; Berry, WE; Eiber, RJ; Frink, DW (1970). "Investigation of scuba cylinder corrosion, Phase 1". National Underwater Accident Data Center Technical Report Number 1. Kingston, Rhode Island: University of Rhode Island.
  96. ^ BS EN 1802:2002 Transportable gas cylinders. Periodic inspection and testing of seamless aluminium alloy gas cylinders. London: British Standards Institution. 25 March 2002. ISBN 0-580-39412-3.
  97. ^ Committee PVE/3/7 (25 March 2002). BS EN 1968:2002 Transportable gas cylinders. Periodic inspection and testing of seamless steel gas cylinders. London: British Standards Institution. ISBN 0-580-39413-1.
  98. ^ AS 2030.1—1999 Australian Standard: The verification, filling, inspection, testing and maintenance of cylinders for storage and transport of compressed gases. Part 1: Cylinders for compressed gases other than acetylene. Reissued incorporating Amendment No. 1 (March 2002) (Third ed.). Sydney, New South Wales: Standards Australia International Ltd. 1999. ISBN 0-7337-2574-0.
  99. ^ ISO 6406 2005, Section 4.
  100. ^ ISO 10461 2005, Section 4.
  101. ^ ISO 6406 2005, Section 5.
  102. ^ ISO 10461 2005, Section 5.
  103. ^ ISO 6406 2005, Section 6.
  104. ^ ISO 10461 2005, Section 6.
  105. ^ ISO 10461 2005, Section 7.1.
  106. ^ ISO 6406 2005, Section 7.2.
  107. ^ ISO 10461 2005, Section 7.2.
  108. ^ ISO 6406 2005, Section 8.
  109. ^ ISO 10461 2005, Section 8.
  110. ^ ISO 6406 2005, Section 9.
  111. ^ ISO 6406 2005, Section 10.
  112. ^ ISO 10461 2005, Section 10.
  113. ^ ISO 6406 2005, Section 11.
  114. ^ ISO 10461 2005, Section 11.
  115. ^ ISO 6406 2005, Section 12.
  116. ^ ISO 10461 2005, Section 12.
  117. ^ ISO 6406 2005, Section 15.2.
  118. ^ ISO 6406 2005, Section 15.4.
  119. ^ ISO 10461 2005, Section 14.5.
  120. ^ ISO 6406 2005, Section 15.7.
  121. ^ ISO 10461 2005, Section 14.8.
  122. ^ ISO 10461 2005, Section 15.
  123. ^ Boyd, Dick; Kent, Greg; Anderson, Dave (January 2006). Tank Cleaning and Tumbling Tips (PDF) (Fourth ed.). West Allis, WI: Global Manufacturing Corp. Archived (PDF) from the original on 19 March 2015. Retrieved 12 March 2017.
  124. ^ Boyd, Dick; Kent, Greg (January 2002). Converting dive tanks for oxygen service with GMC Oxy-Safe products (PDF) (Second ed.). West Allis, WI.: Global Manufacturing Corp. Archived (PDF) from the original on 9 May 2016. Retrieved 12 March 2017.
  125. ^ Acott, CJ (1995). "A pre-dive check; An evaluation of a safety procedure in recreational diving: Part 1". Journal of the South Pacific Underwater Medicine Society. 25 (2). Melbourne, Victoria: SPUMS.
  126. ^ Staff (Summer 2014). "Incident Insights - Trust But Verify". Alert Diver. Archived from the original on 15 September 2015. Retrieved 13 November 2016.
  127. ^ Denoble, P.J.; Caruso, J.L.; Dear, G de L.; Pieper, C.F.; Vann, R.D. (2008). "Common causes of open-circuit recreational diving fatalities". Undersea & Hyperbaric Medicine. 35 (6). Bethesda, Maryland: 393–406. PMID 19175195.
  128. ^ Acott, CJ (2003). "Recreational scuba diving equipment problems, morbidity and mortality: an overview of the Diving Incident Monitoring Study and Project Stickybeak". Journal of the South Pacific Underwater Medicine Society. 33 (1). Melbourne, Victoria: SPUMS.
  129. ^ Staff (18 December 2014). "Injuries due to failure of diver's emergency gas cylinder". Safety flash alert 866. IMCA. Archived from the original on 26 January 2019. Retrieved 15 March 2017.
  130. ^ Staff (7 January 2016). "Injuries due to failure of diver's emengency gas cylinder – Use of incompatible threads". Safety flash alert 986. IMCA. Archived from the original on 26 January 2019. Retrieved 15 March 2017.
  131. ^ Staff (17 August 2009). "Pillar valve failure". Safety flash alert 480. IMCA. Archived from the original on 15 March 2017. Retrieved 15 March 2017.
  132. ^ Barr, Lori L; Martin, Larry R (1991). "Tank carrier's lateral epicondylitis: Case reports and a new cause for an old entity". Journal of the South Pacific Underwater Medicine Society. 21 (1). Melbourne, Victoria: SPUMS.
  133. ^ US Navy Diving Manual 2006, Section 7-4.5 Safety precautions for charging and handling cylinders.
  134. ^ US Navy Diving Manual 2006.
  135. ^ Moran, Dave (1999). "Interview with Bill High, President of PSI Inc". Dive New Zealand. Archived from the original on 15 March 2017. Retrieved 15 March 2017.
  136. ^ a b c DGM_Support (16 April 2014). "How to select the correct Proper Shipping Name?". Hoofddorp, The Netherlands: Dangerous Goods Management Group. Archived from the original on 19 January 2016. Retrieved 31 January 2016.
  137. ^ "§ 172.101 Hazardous Materials Table". 49 CFR Ch. I Subpart B -Table of Hazardous Materials and Special Provisions (PDF). Washington, DC: Pipeline and Hazardous Materials Safety Admin. DOT. 8 January 2010. pp. 134, 207, 249. Archived (PDF) from the original on 7 March 2016. Retrieved 31 January 2016.
  138. ^ a b c d e f Economic Commission for Europe Committee on Inland Transport (2014). European Agreement Concerning the International Carriage of Dangerous Goods by Road (ADR) (PDF). New York and Geneva: United Nations. ISBN 978-92-1-056691-9. Archived (PDF) from the original on 15 January 2016. Retrieved 31 January 2016.
  139. ^ "Packing Instruction 200, Table 1: Compressed gases". Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations (PDF). Vol. II (Nineteenth revised ed.). New York and Geneva: United Nations. 2015. p. 44. Archived (PDF) from the original on 15 January 2016. Retrieved 2 February 2016.
  140. ^ Staff. "Items that are allowed in baggage: Information for Passengers on Dangerous Goods". London: Civil Aviation Authority. Archived from the original on 3 February 2016. Retrieved 2 February 2016.
  141. ^ a b c d e f g h "Guidance note 27: Guidance for the carriage of gas cylinders on vehicles". Bcga Guidance Note (Revision 1 ed.). Derby, UK: British Compressed Gases Association. 2015. ISSN 0260-4809. Archived from the original on 6 April 2016. Retrieved 31 January 2016.
  142. ^ Staff (2015). "The carriage of small quantities of gas cylinders on vehicles". Leaflet 1: Revision 5. Derby, UK: British Compressed Gases Association. Archived from the original on 13 March 2016. Retrieved 31 January 2016.
  143. ^ DOT (January 2016). "§171.1 Applicability of Hazardous Materials Regulations (HMR) to persons and functions.". Electronic Code of Federal Regulations, Title 49 - Transportation. Washington, DC: US Department of Transport. Archived from the original on 20 December 2015. Retrieved 2 February 2016.
  144. ^ a b US Department of Transport (20 January 2016). "Part 173—Shippers—General Requirements For Shipments and Packagings". Code of Federal Regulations Title 49 - Transportation. Washington, DC: US Government publishing office. Archived from the original on 20 December 2015. Retrieved 23 January 2016.
  145. ^ US Department of Transport. "Code of Federal Regulations 49 - Transportation". 49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3. Ithaca, New York: Cornell University Law School Legal Information Institute. Archived from the original on 27 January 2016. Retrieved 21 January 2016.
  146. ^ PHMSA staff. "Special Permits list". Washington, DC: Pipeline and Hazardous Materials Safety Administration. Archived from the original on 29 January 2016. Retrieved 23 January 2016.
  147. ^ Monahan, Corey (1 July 2011). "Cylinders are HAZMAT?". Archived from the original on 27 January 2016. Retrieved 21 January 2016.
  148. ^ Staff (19 March 2013). "Pack Safe: Scuba tanks, pressurized". Washington, DC: Federal Aviation Administration. Archived from the original on 28 January 2016. Retrieved 21 January 2016.
  149. ^ Staff. "My TSA". Search results for Scuba cylinder. Transportation Security. Archived from the original on 18 April 2023. Retrieved 21 January 2016.
  150. ^ a b c d "Aluminum Cylinder Finishes". www.xsscuba.com. Archived from the original on 8 December 2019. Retrieved 18 December 2019.
  151. ^ a b c d "Cylinders". www.xsscuba.com. Archived from the original on 8 December 2019. Retrieved 18 December 2019.
  152. ^ a b c Staff (2012). "Cylinder Identification. Colour Coding and Labelling Requirements". Technical Information Sheet 6 Revision 2. Derby, UK: British Compressed Gases Association. Archived from the original on 9 November 2016. Retrieved 8 November 2016.
  153. ^ a b Staff (2007). Marking and Colour Coding of Gas Cylinders, Quads and Banks for Diving Applications IMCA D043 (PDF). London, UK: International Marine Contractors Association. Retrieved 1 February 2016.[permanent dead link]
  154. ^ a b c d e f g h i j k l m n o p "Gas cylinder producer stamping signs". pwent.eu. Archived from the original on 29 December 2020. Retrieved 18 February 2021.
  155. ^ "Our product range: Scuba diving". eurocylinders.com. Archived from the original on 20 January 2021. Retrieved 8 February 2021.
  156. ^ "Steel Cylinders for Scuba Diving". www.divefaber.com. Archived from the original on 1 March 2021. Retrieved 18 February 2021.
  157. ^ "Vitkovice Diving Cylinders". www.mikesdivestore.com. Archived from the original on 28 November 2020. Retrieved 18 February 2021.
  158. ^ "Vítkovice Cylinders a.s." www.vitkovicecylinders.cz. Archived from the original on 3 March 2021. Retrieved 18 February 2021.
  159. ^ "Luxfer Gas Cylinders". www.luxfercylinders.com. Archived from the original on 5 March 2021. Retrieved 18 February 2021.
  160. ^ "Expanded cylinder operations". metalimpact.com. Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  161. ^ "Scuba". thunderbird-cylinders.com. Retrieved 1 October 2024.

Sources

  1. NOAA Diving Program (U.S.) (28 February 2001). Joiner, James T (ed.). NOAA Diving Manual, Diving for Science and Technology (4th ed.). Silver Spring, Maryland: National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, National Undersea Research Program. ISBN 978-0-941332-70-5. CD-ROM prepared and distributed by the National Technical Information Service (NTIS)in partnership with NOAA and Best Publishing Company
  2. Technical Committee ISO/TC 58, Gas Cylinders, Subcommittee SC4 (2005). "Gas cylinders - Seamless steel gas cylinders - Periodic inspection and testing" (PDF). ISO 6406:2005(E). Geneva: International Standards Organisation. Archived (PDF) from the original on 11 October 2016. Retrieved 4 August 2016.
  3. Technical Committee ISO/TC 58, Gas cylinders, Subcommittee SC4 (2005). "Gas cylinders - Seamless aluminium-alloy gas cylinders - Periodic inspection and testing". ISO 10461:2005(E). Geneva: International Standards Organisation. Retrieved 5 August 2016.
  4. US Navy (2006). US Navy Diving Manual, 6th revision. Washington, DC.: US Naval Sea Systems Command. Retrieved 15 September 2016.

External links

Media related to Diving cylinders at Wikimedia Commons