stringtranslate.com

TRPM5

Miembro 5 de la subfamilia M del canal catiónico potencial del receptor transitorio (TRPM5), también conocido como canal 5 del potencial receptor transitorio largo, es una proteína que en los humanos está codificada por el gen TRPM5 . [5] [6]

Función

TRPM5 es un canal catiónico no selectivo activado por calcio que induce la despolarización ante aumentos de calcio intracelular; es un mediador de señales en las células quimiosensoriales. La actividad del canal se inicia mediante un aumento del calcio intracelular y el canal permea cationes monovalentes como K + y Na + . TRPM5 es un componente clave de la transducción del gusto en el sistema gustativo de los sabores amargo , dulce y umami , que se activa mediante altos niveles de calcio intracelular . También se ha señalado como un posible contribuyente a la señalización del sabor a grasa . [7] [8] La apertura dependiente del calcio de TRPM5 produce un potencial generador despolarizante que conduce a un potencial de acción . [9]

TRPM5 se expresa en las células β pancreáticas [10] donde participa en el mecanismo de señalización para la secreción de insulina. La potenciación de TRPM5 en las células β conduce a una mayor secreción de insulina y protege contra el desarrollo de diabetes tipo 2 en ratones. [11] Se puede encontrar una mayor expresión de TRPM5 en las células del penacho , [12] en las células quimiosensoriales solitarias y en varios otros tipos de células del cuerpo que tienen una función sensorial.

Fármacos que modulan TRPM5

El papel de TRPM5 en las células β pancreáticas lo convierte en un objetivo para el desarrollo de nuevas terapias antidiabéticas. [13]

Agonistas

Antagonistas

Se pueden utilizar agentes bloqueadores selectivos de los canales iónicos TRPM5 para identificar corrientes TRPM5 en células primarias. Sin embargo, la mayoría de los compuestos identificados muestran una selectividad pobre entre TRPM4 y TRPM5 u otros canales iónicos.

Ver también

Referencias

  1. ^ abc GRCh38: Ensembl lanzamiento 89: ENSG00000070985 - Ensembl , mayo de 2017
  2. ^ abc GRCm38: Ensembl lanzamiento 89: ENSMUSG00000009246 - Ensembl , mayo de 2017
  3. ^ "Referencia humana de PubMed:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  4. ^ "Referencia de PubMed del ratón:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  5. ^ Prawitt D, Enklaar T, Klemm G, Gärtner B, Spangenberg C, Winterpacht A, Higgins M, Pelletier J, Zabel B (enero de 2000). "Identificación y caracterización de MTR1, un gen novedoso con homología con la melastatina (MLSN1) y la familia de genes trp ubicado en la región crítica BWS-WT2 en el cromosoma 11p15.5 y que muestra expresión específica de alelo". Genética Molecular Humana . 9 (2): 203–16. doi : 10.1093/hmg/9.2.203 . PMID  10607831.
  6. ^ Clapham DE, Julius D, Montell C, Schultz G (diciembre de 2005). "Unión Internacional de Farmacología. XLIX. Nomenclatura y relaciones estructura-función de canales de potencial receptor transitorio". Revisiones farmacológicas . 57 (4): 427–50. doi :10.1124/pr.57.4.6. PMID  16382100. S2CID  17936350.
  7. ^ Mattes RD (septiembre de 2011). "La evidencia acumulada respalda un componente de sabor de los ácidos grasos libres en humanos". Fisiología y comportamiento . 104 (4): 624–31. doi :10.1016/j.physbeh.2011.05.002. PMC 3139746 . PMID  21557960. 
  8. ^ Liu P, Shah BP, Croasdell S, Gilbertson TA (junio de 2011). "El canal de potencial receptor transitorio tipo M5 es esencial para el sabor a grasa". La Revista de Neurociencia . 31 (23): 8634–42. doi :10.1523/JNEUROSCI.6273-10.2011. PMC 3125678 . PMID  21653867. 
  9. ^ Chaudhari N, Roper SD (agosto de 2010). "La biología celular del gusto". La revista de biología celular . 190 (3): 285–96. doi :10.1083/jcb.201003144. PMC 2922655 . PMID  20696704. 
  10. ^ Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (marzo de 2010) . "La pérdida de oscilaciones de Ca2+ inducidas por glucosa de alta frecuencia en los islotes pancreáticos se correlaciona con la intolerancia a la glucosa en ratones Trpm5-/-". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 107 (11): 5208–13. Código Bib : 2010PNAS..107.5208C. doi : 10.1073/pnas.0913107107 . PMC 2841940 . PMID  20194741. 
  11. ^ ab Philippaert K, Pironet A, Mesuere M, Sones W, Vermeiren L, Kerselaers S, Pinto S, Segal A, Antoine N, Gysemans C, Laureys J, Lemaire K, Gilon P, Cuypers E, Tytgat J, Mathieu C, Schuit F, Rorsman P, Talavera K, Voets T, Vennekens R (marzo de 2017). "Los glucósidos de esteviol mejoran la función de las células beta pancreáticas y la sensación de sabor mediante la potenciación de la actividad del canal TRPM5". Comunicaciones de la naturaleza . 8 : 14733. Código Bib : 2017NatCo...814733P. doi : 10.1038/ncomms14733. PMC 5380970 . PMID  28361903. 
  12. ^ Kaske S, Krasteva G, König P, Kummer W, Hofmann T, Gudermann T, Chubanov V (julio de 2007). "TRPM5, un canal iónico potencial de receptor transitorio de señalización gustativa, es un componente de señalización ubicuo en las células quimiosensoriales". BMC Neurociencia . 8 : 49. doi : 10.1186/1471-2202-8-49 . PMC 1931605 . PMID  17610722. 
  13. ^ Philippaert, Koenraad; Vennekens, Rudi (1 de enero de 2015). Capítulo 19 - Canales catiónicos de potencial receptor transitorio (TRP) en la diabetes . págs. 343–363. doi :10.1016/B978-0-12-420024-1.00019-9. ISBN 9780124200241. {{cite book}}: |journal=ignorado ( ayuda )
  14. ^ Mancuso G, Borgonovo G, Scaglioni L, Bassoli A (octubre de 2015). "Los fitoquímicos de Ruta graveolens activan los receptores del sabor amargo TAS2R y los canales TRP implicados en la gustación y la nocicepción". Moléculas . 20 (10): 18907–22. doi : 10.3390/moléculas201018907 . PMC 6331789 . PMID  26501253. 
  15. ^ Palmer RK, Atwal K, Bakaj I, Carlucci-Derbyshire S, Buber MT, Cerne R, Cortés RY, Devantier HR, Jorgensen V, Pawlyk A, Lee SP, Sprous DG, Zhang Z, Bryant R (diciembre de 2010). "El óxido de trifenilfosfina es un inhibidor potente y selectivo del potencial receptor transitorio del canal iónico melastatina-5". Tecnologías de ensayo y desarrollo de fármacos . 8 (6): 703–13. doi :10.1089/adt.2010.0334. PMID  21158685.
  16. ^ Philippaert K, Kerselaers S, Voets T, Vennekens R (enero de 2018). "2+ canales selectivos de cationes monovalentes activados". Descubrimiento de SLAS . 23 (4): 341–352. doi : 10.1177/2472555217748932 . PMID  29316407.
  17. ^ ab Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (marzo de 2005). "Comparación de las propiedades funcionales de los canales catiónicos activados por Ca2 + TRPM4 y TRPM5 de ratones". Calcio celular . 37 (3): 267–78. doi :10.1016/j.ceca.2004.11.001. PMID  15670874.
  18. ^ Gees M, Alpizar YA, Luyten T, Parys JB, Nilius B, Bultynck G, Voets T, Talavera K (mayo de 2014). "Efectos diferenciales de los compuestos amargos sobre los canales de transducción del sabor TRPM5 y el receptor IP3 tipo 3". Sentidos químicos . 39 (4): 295–311. doi : 10.1093/chemse/bjt115 . PMID  24452633.

Otras lecturas

enlaces externos

Este artículo incorpora texto de la Biblioteca Nacional de Medicina de Estados Unidos , que se encuentra en el dominio público .