stringtranslate.com

Receptor 2 del péptido formilo

El receptor 2 del péptido N-formilo ( FPR2 ) es un receptor acoplado a proteína G (GPCR) ubicado en la superficie de muchos tipos de células de diversas especies animales. La proteína del receptor humano está codificada por el gen FPR2 y se activa para regular la función celular al unirse a cualquiera de una amplia variedad de ligandos , incluidos no solo ciertos oligopéptidos que contienen N-formilmetionina , como la N-formilmetionina-leucil-fenilalanina (FMLP), sino también también el metabolito de ácidos grasos poliinsaturados del ácido araquidónico , la lipoxina A4 ( LXA4 ). [5] [6] Debido a su interacción con la lipoxina A4, FPR2 también se denomina comúnmente ALX/FPR2 o simplemente receptor ALX .

Expresión

El receptor FPR2 se expresa en neutrófilos , eosinófilos , monocitos , macrófagos , células T , fibroblastos sinoviales y epitelio intestinal y de las vías respiratorias humanos . [7]

Función

Muchos oligopéptidos que poseen un residuo N-terminal de N -formilmetionina, como el tripéptido prototípico N-formilmetionina-leucil-fenilalanina (es decir, FMLP), son productos de la síntesis de proteínas realizada por bacterias . Estimulan a los granulocitos para que migren direccionalmente (ver quimiotaxis ) y se vuelvan activos para engullir (ver fagocitosis ) y matar bacterias y, por lo tanto, contribuyen a la defensa del huésped al dirigir la respuesta inmune innata de la inflamación aguda a los sitios de invasión bacteriana. Los primeros estudios sugirieron que estos formiloligopéptidos operaban mediante un mecanismo de receptor (bioquímica) . En consecuencia, la línea celular de leucocitos humanos, promielocitos HL-60 (que no responden a FMLP), se diferenció intencionalmente en granulocitos (que sí responden a FMLP) y se usó para purificar parcialmente [8] y clonar un gen que, cuando se transfectaba en FMLP -Las células que no respondieron otorgaron capacidad de respuesta a este y otros oligopéptidos N-formilo. [9] [10] [11] [12] [13] Este receptor se denominó inicialmente receptor de péptido formilo (es decir, FPR). Sin embargo, una serie de estudios posteriores clonaron dos genes que codificaban proteínas similares a receptores con secuencias de aminoácidos muy similares a la de FPR. [14] [15] [16] A los tres receptores se les habían dado varios nombres, pero ahora se denominan receptor 1 de péptido formilo (es decir, FPR1) para el primer receptor definido, FPR2, y receptor 3 de péptido formilo (es decir, FPR3). FPR2 y FPR3 se denominan receptores de péptidos formilo basándose en las similitudes de sus secuencias de aminoácidos con la de FPR1 en lugar de en cualquier preferencia por unirse a péptidos formilo. De hecho, FPR2 prefiere un conjunto muy diferente de ligandos y tiene algunas funciones muy diferentes a las de FPR1, mientras que FPR3 no se une a FMLP ni a muchos otros péptidos N-formilo que se unen a FPR1 o FPR2. [17] Una función importante de FPR2 es la unión de ciertos mediadores pro-resolución (SPM) especializados, es decir, lipoxina (Lx)A4 y AT-LxA4 (metabolitos del ácido araquidónico), así como resolvina D1 (RvD)1, RvD2 y AT-RvD1 (metabolitos del ácido docosahexaenoico ) y, por lo tanto, mediar las actividades de estos metabolitos para inhibir y resolver la inflamación (consulte Mediadores pro-resolutivos especializados ). Sin embargo, FPR2 también media respuestas a una amplia gama de polipéptidos y proteínas que pueden servir para promover la inflamación o regular actividades que no involucran directamente la inflamación. La función de FPR3 no está clara.

Nomenclatura

De manera confusa, existen dos nomenclaturas "estándar" para los receptores FPR y sus genes, la primera utilizada, FPR, FPR1 y FPR2 y su reemplazo, FPR1, FPR2 y FPR3. Esta última nomenclatura es la recomendada por la Unión Internacional de Farmacología Clínica y Básica [17] y se utiliza aquí. Otros nombres utilizados anteriormente para FPR1 son NFPR y FMLPR; para FPR2 son FPRH1, FPRL1, RFP, LXA4R, ALXR, FPR2/ALX, HM63, FMLPX y FPR2A; y para FPR3 son FPRH2, FPRL2 y FMLPY. [17]

genes

Humano

"El gen FPR2 humano codifica el receptor de 351 aminoácidos, FPR2, dentro de un marco de lectura abierto sin intrones ". Forma un grupo con los genes FPR1 y FPR3 en el cromosoma 19q.13.3 en el orden de FPR1, FPR2 y FPR3; Este grupo también incluye los genes de otros dos receptores de factores quimiotácticos, el receptor C5a acoplado a proteína G (también denominado CD88) y un segundo receptor C5a, GPR77 (es decir, C5a2 o C5L2), que tiene la estructura de los receptores de proteína G pero aparentemente no. no se acopla a las proteínas G y su función es incierta. [18] Los parálogos FPR1, FPR2 y FPR3 , basados ​​en análisis filogenéticos , se originaron a partir de un ancestro común con duplicación temprana de FPR1 y FPR2/FPR3 dividiéndose con FPR3 originado en el último evento de duplicación cerca del origen de los primates. [19]

Ratón

Los ratones tienen no menos de 7 receptores FPR codificados por 7 genes que se localizan en el cromosoma 17A3.2 en el siguiente orden: Fpr1 , Fpr-rs2 (o fpr2 ), Fpr-rs1 (o LXA4R ), Fpr-rs4 , Fpr-rs7 , Fpr-rs7 , Fpr-rs6 y Fpr-rs3 ; este locus también contiene Pseudogenes ψFpr-rs2 y ψFpr-rs3 (o ψFpr-rs5 ) que se encuentran justo después de Fpr-rs2 y Fpr-rs1 , respectivamente. Los 7 receptores FPR de ratón tienen ≥50% de identidad de secuencia de aminoácidos entre sí, así como con los tres receptores FPR humanos. [20] Fpr2 y mFpr-rs1 se unen con alta afinidad y responden a las lipoxinas, pero tienen poca o ninguna afinidad y capacidad de respuesta hacia los péptidos formílicos; por tanto, comparten propiedades clave con el FPR2 humano; [21] [22] [23]

Estudios de eliminación de genes

The large number of mouse compared to human FPR receptors makes it difficult to extrapolate human FPR functions based on genetic (e.g. gene knockout or forced overexpression) or other experimental manipulations of the FPR receptors in mice. In any event, combined disruption of the Fpr2 and Fpr3 genes causes mice to mount enhanced acute inflammatory responses as evidenced in three models, intestine inflammation caused by mesenteric artery ischemia-reperfusion, paw swelling caused by carrageenan injection, and arthritis caused by the intraperatoneal injection of arthritis-inducing serum.[24] Since Fpr2 gene knockout mice exhibit a faulty innate immune response to intravenous listeria monocytogenes injection,[25] these results suggest that the human FPR2 receptor and mouse Fpr3 receptor have equivalent functions in dampening at least certain inflammatory response.

Other species

Rats express an ortholog of FPR2 (74% amino acid sequence identity) with high affinity for lipoxin A4.[20]

Cellular and tissue distribution

FPL2 is often co-expressed with FPR1. It is widely expressed by circulating blood neutrophils, eosinophils, basophils, and monocytes; lymphocyte T cells and B cells; tissue Mast cells, macrophages, fibroblasts, and immature dendritic cells; vascular endothelial cells; neural tissue glial cells, astrocytes, and neuroblastoma cells; liver hepatocytes; various types of epithelial cells; and various types of multicellular tissues.[20][26][27][28][29]

Ligands and ligand-based disease-related activities

FPR2 is also known as the LXA4 or ALX/FPR2 receptor based on studies finding that is a high affinity receptor for the arachidonic acid metabolite, lipoxin A4 (LXA4), and thereafter for a related arachidonic acid metabolite, the Epi-lipoxin, aspirin-triggered lipoxin A4 (i.e. ATL, 15-epi-LXA4) and a docosahexaenoic acid metabolite, resolvin D1 (i.e. RvD1); these three cell-derived fatty acid metabolites act to inhibit and resolve inflammatory responses.[30][31][32][33][34] This receptor was previously known as an orphan receptor, termed RFP, obtained by screening myeloid cell-derived libraries with a FMLP-like probe.[35][36][37] In addition to LXA4, LTA, RvD1, and FMLP, FPR2 binds a wide range of polypeptides, proteins, and products derived from these polypeptides and proteins. One or more of these various ligands may be involved not only in regulating inflammation but also be involved in the development of obesity, cognitive decline, reproduction, neuroprotection, and cancer.[38] However, the most studied and accepted role for FPR2 receptors is in mediating the actions of the cited lipoxins and resolvins in dampening and resolving a wide range of inflammatory reactions (see lipoxin, Epi-lipoxin, and resolvin).[39][40]

The following is a list of FPR2/ALX ligands and in parentheses their suggested pro-inflammatory or anti-inflammatory actions base on in vitro and animal model studies: a) bacterial and mitochondrial N-formyl peptides such as FMLP (pro-inflammatory but perhaps less significant or insignificant compared to the actions of LXA4, ATL, and RvD1 on FPR2);

b) Hp(2-20), a non-formyl peptide derived from Helicobacter pylori (pro-inflammatory by promoting inflammatory responses against this stomach ulcer-causing pathogen);

c) T21/DP107 and N36, which are N-acetylated polypeptides derived from the gp41 envelope protein of the HIV-1 virus, F peptide, which is derived from gp120 protein of the HIV-1 Bru strain virus, and V3 peptide, which is derived from a linear sequence of the V3 region of the HIV-1 MN strain virus (unknown effect on inflammation and HIV infection);

d) the N-terminally truncated form of the chemotactic chemokine, CCL23, termed CCL23 splice variant CCL23β(amino acids 22–137) and SHAAGtide, which is a product of CCL23β cleavage by pro-inflammatory proteases (pro-inflammatory); e) two N-acetyl peptides, Ac2–26 and Ac9–25 of Annexin A1 (ANXA1 or lipocortin 1), which at high concentrations fully stimulate neutrophil functions but at lower concentrations leave neutrophils desensitized (i.e. unresponsive) to the chemokine IL-8 (CXCL8) (pro-inflammatory and anti-inflammatory, respectively, highlighting the duality of FPR2/ALX functions in inflammation);

f) Amyloid beta(1–42) fragment and prion protein fragment PrP(106–126) (pro-inflammatory, suggesting a role for FPR2/ALX in the inflammatory components of diverse amyloid-based diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, prion-based diseases such as Transmissible spongiform encephalopathy, Creutzfeldt–Jakob disease, and Kuru), and numerous other neurological and non-neurological diseases [see amyloid]);

g) the neuroprotective peptide, Humanin (anti-inflammatory by inhibiting the pro-inflammatory effects of Amalyoid beta(1-42) in promoting Alzheimer's disease-related inflammation);

h) two cleaved soluble fragments of UPARAP which is the Urokinase-type plasminogen activator receptor (uPAR), D2D3(88–274) and uPAR(84–95) (pro-inflammatory);

i) LL-37 and CRAMP, which are enzymatic cleavage products of human and rat, respectively, Cathelicidin-related antimicrobial peptides, numerous Pleurocidins which are a family of cationic antimicrobial peptides found in fish and other vertebrates structurally and functionally similar to cathelicidins,[29] and Temporin A, which is a frog-derived antimicrobial peptide ((pro-inflammatory products derived from host anti-microbial proteins); and

j) Pituitary adenylate cyclase-activating polypeptide 27 (pro-inflammatory).[17][41]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000171049 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000052270 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (Mar 1997). "Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor". The Journal of Biological Chemistry. 272 (11): 6972–8. doi:10.1074/jbc.272.11.6972. PMID 9054386.
  6. ^ "Entrez Gene: FPR2 formyl peptide receptor 2".
  7. ^ Duvall MG, Levy BD (2015). "DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation". European Journal of Pharmacology. 785: 144–55. doi:10.1016/j.ejphar.2015.11.001. PMC 4854800. PMID 26546247.
  8. ^ Polakis PG, Uhing RJ, Snyderman R (Apr 1988). "The formylpeptide chemoattractant receptor copurifies with a GTP-binding protein containing a distinct 40-kDa pertussis toxin substrate". The Journal of Biological Chemistry. 263 (10): 4969–76. doi:10.1016/S0021-9258(18)68882-9. PMID 2832415.
  9. ^ Boulay F, Tardif M, Brouchon L, Vignais P (May 1990). "Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA". Biochemical and Biophysical Research Communications. 168 (3): 1103–9. doi:10.1016/0006-291x(90)91143-g. PMID 2161213.
  10. ^ Boulay F, Tardif M, Brouchon L, Vignais P (Dec 1990). "The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors". Biochemistry. 29 (50): 11123–33. doi:10.1021/bi00502a016. PMID 2176894.
  11. ^ Murphy PM, Gallin EK, Tiffany HL, Malech HL (Feb 1990). "The formyl peptide chemoattractant receptor is encoded by a 2 kilobase messenger RNA. Expression in Xenopus oocytes". FEBS Letters. 261 (2): 353–7. doi:10.1016/0014-5793(90)80590-f. PMID 1690150. S2CID 22817786.
  12. ^ Coats WD, Navarro J (Apr 1990). "Functional reconstitution of fMet-Leu-Phe receptor in Xenopus laevis oocytes". The Journal of Biological Chemistry. 265 (11): 5964–6. doi:10.1016/S0021-9258(19)39276-2. PMID 2156834.
  13. ^ Perez HD, Holmes R, Kelly E, McClary J, Chou Q, Andrews WH (Nov 1992). "Cloning of the gene coding for a human receptor for formyl peptides. Characterization of a promoter region and evidence for polymorphic expression". Biochemistry. 31 (46): 11595–9. doi:10.1021/bi00161a044. PMID 1445895.
  14. ^ Bao L, Gerard NP, Eddy RL, Shows TB, Gerard C (Jun 1992). "Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19". Genomics. 13 (2): 437–40. doi:10.1016/0888-7543(92)90265-t. PMID 1612600.
  15. ^ Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (Apr 1992). "A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family". The Journal of Biological Chemistry. 267 (11): 7637–43. doi:10.1016/S0021-9258(18)42563-X. PMID 1373134.
  16. ^ Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG (Apr 1992). "Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor". Biochemical and Biophysical Research Communications. 184 (2): 582–9. doi:10.1016/0006-291x(92)90629-y. PMID 1374236.
  17. ^ a b c d Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM (Jun 2009). "International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family". Pharmacological Reviews. 61 (2): 119–61. doi:10.1124/pr.109.001578. PMC 2745437. PMID 19498085.
  18. ^ Li R, Coulthard LG, Wu MC, Taylor SM, Woodruff TM (Mar 2013). "C5L2: a controversial receptor of complement anaphylatoxin, C5a". FASEB Journal. 27 (3): 855–64. doi:10.1096/fj.12-220509. PMID 23239822. S2CID 24870278.
  19. ^ Muto Y, Guindon S, Umemura T, Kőhidai L, Ueda H (Feb 2015). "Adaptive evolution of formyl peptide receptors in mammals". Journal of Molecular Evolution. 80 (2): 130–41. Bibcode:2015JMolE..80..130M. doi:10.1007/s00239-015-9666-z. PMID 25627928. S2CID 14266716.
  20. ^ a b c Migeotte I, Communi D, Parmentier M (Dec 2006). "Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses". Cytokine & Growth Factor Reviews. 17 (6): 501–19. doi:10.1016/j.cytogfr.2006.09.009. PMID 17084101.
  21. ^ He HQ, Liao D, Wang ZG, Wang ZL, Zhou HC, Wang MW, Ye RD (Feb 2013). "Functional characterization of three mouse formyl peptide receptors". Molecular Pharmacology. 83 (2): 389–98. doi:10.1124/mol.112.081315. PMC 4170117. PMID 23160941.
  22. ^ Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN (May 1997). "Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors". The Journal of Experimental Medicine. 185 (9): 1693–704. doi:10.1084/jem.185.9.1693. PMC 2196289. PMID 9151906.
  23. ^ Vaughn MW, Proske RJ, Haviland DL (Sep 2002). "Identification, cloning, and functional characterization of a murine lipoxin A4 receptor homologue gene". Journal of Immunology. 169 (6): 3363–9. doi:10.4049/jimmunol.169.6.3363. PMID 12218158.
  24. ^ Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D'Acquisto F, Buckingham JC, Perretti M, Flower RJ (Mar 2010). "Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation". Journal of Immunology. 184 (5): 2611–9. doi:10.4049/jimmunol.0903526. PMC 4256430. PMID 20107188.
  25. ^ Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, Gao JL, Murphy PM, Wang JM (2012). "Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes". Scientific Reports. 2: 786. Bibcode:2012NatSR...2E.786L. doi:10.1038/srep00786. PMC 3493074. PMID 23139859.
  26. ^ de Paulis A, Prevete N, Fiorentino I, Walls AF, Curto M, Petraroli A, Castaldo V, Ceppa P, Fiocca R, Marone G (Jun 2004). "Basophils infiltrate human gastric mucosa at sites of Helicobacter pylori infection, and exhibit chemotaxis in response to H. pylori-derived peptide Hp(2-20)". Journal of Immunology. 172 (12): 7734–43. doi:10.4049/jimmunol.172.12.7734. PMID 15187157.
  27. ^ Svensson L, Redvall E, Björn C, Karlsson J, Bergin AM, Rabiet MJ, Dahlgren C, Wennerås C (Jul 2007). "House dust mite allergen activates human eosinophils via formyl peptide receptor and formyl peptide receptor-like 1". European Journal of Immunology. 37 (7): 1966–77. doi:10.1002/eji.200636936. PMID 17559171.
  28. ^ Scanzano A, Schembri L, Rasini E, Luini A, Dallatorre J, Legnaro M, Bombelli R, Congiu T, Cosentino M, Marino F (Feb 2015). "Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes". Inflammation Research. 64 (2): 127–35. doi:10.1007/s00011-014-0791-8. PMID 25561369. S2CID 17721865.
  29. ^ a b Pundir P, Catalli A, Leggiadro C, Douglas SE, Kulka M (Jan 2014). "Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor". Mucosal Immunology. 7 (1): 177–87. doi:10.1038/mi.2013.37. PMID 23839065. S2CID 23300384.
  30. ^ Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN (Jan 2010). "Resolvin D1 binds human phagocytes with evidence for proresolving receptors". Proceedings of the National Academy of Sciences of the United States of America. 107 (4): 1660–5. Bibcode:2010PNAS..107.1660K. doi:10.1073/pnas.0907342107. PMC 2824371. PMID 20080636.
  31. ^ Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB (Aug 2011). "Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice". Journal of Immunology. 187 (4): 1957–69. doi:10.4049/jimmunol.1101305. PMID 21724996.
  32. ^ Fiore S, Romano M, Reardon EM, Serhan CN (Jun 1993). "Induction of functional lipoxin A4 receptors in HL-60 cells". Blood. 81 (12): 3395–403. doi:10.1182/blood.V81.12.3395.3395. PMID 8389617.
  33. ^ Fiore S, Maddox JF, Perez HD, Serhan CN (Jul 1994). "Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor". The Journal of Experimental Medicine. 180 (1): 253–60. doi:10.1084/jem.180.1.253. PMC 2191537. PMID 8006586.
  34. ^ Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN (Jan 2001). "Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses". The American Journal of Pathology. 158 (1): 3–9. doi:10.1016/S0002-9440(10)63937-5. PMC 1850279. PMID 11141472.
  35. ^ Boulay F, Tardif M, Brouchon L, Vignais P (Dec 1990). "The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors". Biochemistry. 29 (50): 11123–33. doi:10.1021/bi00502a016. PMID 2176894.
  36. ^ Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (Apr 1992). "A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family". The Journal of Biological Chemistry. 267 (11): 7637–43. doi:10.1016/S0021-9258(18)42563-X. PMID 1373134.
  37. ^ Perez HD, Holmes R, Kelly E, McClary J, Andrews WH (Sep 1992). "Cloning of a cDNA encoding a receptor related to the formyl peptide receptor of human neutrophils". Gene. 118 (2): 303–4. doi:10.1016/0378-1119(92)90208-7. PMID 1511907.
  38. ^ Serhan CN, Chiang N, Dalli J (Apr 2015). "The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution". Seminars in Immunology. 27 (3): 200–15. doi:10.1016/j.smim.2015.03.004. PMC 4515371. PMID 25857211.
  39. ^ Romano M (2010). "Lipoxin and aspirin-triggered lipoxins". TheScientificWorldJournal. 10: 1048–64. doi:10.1100/tsw.2010.113. PMC 5763664. PMID 20526535.
  40. ^ Buckley CD, Gilroy DW, Serhan CN (Mar 2014). "Proresolving lipid mediators and mechanisms in the resolution of acute inflammation". Immunity. 40 (3): 315–27. doi:10.1016/j.immuni.2014.02.009. PMC 4004957. PMID 24656045.
  41. ^ Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG (May 2015). "The Role of Formylated Peptides and Formyl Peptide Receptor 1 in Governing Neutrophil Function during Acute Inflammation". The American Journal of Pathology. 185 (5): 1172–1184. doi:10.1016/j.ajpath.2015.01.020. PMC 4419282. PMID 25791526.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.