Bruno de Finetti (13 de junio de 1906 - 20 de julio de 1985) fue un estadístico y actuario probabilista italiano , conocido por su concepción "subjetiva operacional" de la probabilidad . La exposición clásica de su distintiva teoría es "La prévision: ses lois logiques, ses source subjections" de 1937 , [1] que analizaba la probabilidad fundada en la coherencia de las probabilidades de las apuestas y las consecuencias de la intercambiabilidad .
De Finetti nació en Innsbruck , Austria, y estudió matemáticas en el Politécnico de Milán . Se graduó en 1927, escribiendo su tesis bajo la supervisión de Giulio Vivanti . Después de graduarse, trabajó como actuario y estadístico en el Istituto Nazionale di Statistica ( Instituto Nacional de Estadística ) en Roma y, a partir de 1931, en la compañía de seguros de Trieste Assicurazioni Generali . En 1936 ganó un concurso para la cátedra de Matemáticas y Estadísticas Financieras, pero no fue nominado debido a una ley fascista que prohibía el acceso a candidatos solteros; [2] fue designado profesor ordinario en la Universidad de Trieste recién en 1950.
Publicó extensamente (17 artículos solo en 1930, según Lindley) y adquirió una reputación internacional en el pequeño mundo de los matemáticos de probabilidad. Enseñó análisis matemático en Padua y luego ganó una cátedra en Matemáticas Financieras en la Universidad de Trieste (1939). En 1954 se trasladó a la Universidad La Sapienza de Roma , primero a otra cátedra en Matemáticas Financieras y luego, de 1961 a 1976, una en Cálculo de Probabilidades. De Finetti desarrolló sus ideas sobre probabilidad subjetiva en la década de 1920 independientemente de Frank P. Ramsey . [3] Aún así, según el prefacio de su "Teoría de la probabilidad", se basó en ideas de Harold Jeffreys , I. J. Good y B. O. Koopman . También razonó sobre la conexión de la economía y la probabilidad, y pensó que los principios rectores para ser óptimos paretianos se inspiraban además en criterios de "justicia". [4] De Finetti mantuvo diferentes creencias sociales y políticas a lo largo de su vida: siguió el fascismo durante su juventud, luego se pasó al socialismo cristiano y finalmente se adhirió al Partido Radical . [2] [5]
De Finetti recién se hizo conocido en el mundo estadístico angloamericano en los años 50, cuando L. J. Savage , que había adoptado independientemente el subjetivismo , lo atrajo hacia él; otro gran defensor fue Dennis Lindley . De Finetti murió en Roma en 1985.
De Finetti hizo hincapié en un enfoque de inferencia predictiva para las estadísticas; propuso un experimento mental en los siguientes términos (descrito con mayor detalle en coherencia ): debes fijar el precio de una promesa de pagar $1 si hubiera vida en Marte hace mil millones de años, y $0 si no la hubiera, y mañana se revelará la respuesta. Sabes que tu oponente podrá elegir entre comprar esa promesa tuya al precio que has fijado, o exigirte que compres esa promesa de tu oponente, siempre al mismo precio. En otras palabras: tú fijas las probabilidades, pero tu oponente decide qué lado de la apuesta será tuyo. El precio que fijas es la "probabilidad subjetiva operacional" que asignas a la proposición en la que estás apostando. Este precio tiene que obedecer a los axiomas de probabilidad si no vas a enfrentarte a una pérdida segura, como ocurriría si fijas un precio superior a $1 (o un precio negativo). Al considerar las apuestas en más de un evento, de Finetti podría justificar la aditividad. Los precios, o equivalentemente las probabilidades, que no le exponen a una pérdida segura a través de una casa de apuestas holandesa se denominan coherentes .
De Finetti también es conocido por su teorema sobre secuencias intercambiables de variables aleatorias . De Finetti no fue el primero en estudiar la intercambiabilidad, pero sí le dio mayor visibilidad al tema. Comenzó a publicar sobre intercambiabilidad a fines de la década de 1920, pero su artículo de 1937 "La Prévision" (ver bibliografía) es su trabajo más famoso.
En 1929, de Finetti introdujo el concepto de distribuciones de probabilidad infinitamente divisibles .
También introdujo los diagramas de Finetti para graficar frecuencias genotípicas .
Se atribuye a la traducción inglesa de su libro de 1974 el haber revivido el interés en la inferencia predictiva en el mundo anglófono y haber llamado la atención sobre la idea de intercambiabilidad. [6]
En 1961 fue elegido miembro de la Asociación Estadounidense de Estadística . [7] El Premio de Finetti, otorgado anualmente por la Asociación Europea para la Toma de Decisiones , lleva su nombre. El Departamento de Matemáticas, Estadística y Economía de la Universidad de Trieste también lleva su nombre.
En el siglo XXI se ha descubierto que las extensiones cuánticas del teorema de representación de De Finetti son útiles en la información cuántica , [8] [9] [10] en temas como la distribución de claves cuánticas [11] y la detección de entrelazamientos . [12]
Ver obras en
(Las siguientes son traducciones de obras publicadas originalmente en italiano o francés.)
Los siguientes libros tienen un capítulo sobre De Finetti y referencias a literatura adicional.