Generalmente, un sistema recomendador compara el perfil del usuario con algunas características de referencia de los temas, y busca predecir el baremo o ponderación que el usuario le daría a un ítem que aún el sistema no ha considerado.
Recientemente, un sistema recomendador ha sido introducido para una fábrica de ladrillos y torques basado en inferencias estadísticas en oposición a las técnicas de filtros colaborativos del comercio electrónico.
Suficientemente interesante, estos sistemas son usualmente implementados usando procesos de búsqueda indexando datos no tradicionales.
Uno de los algoritmos más usado comúnmente en sistemas recomendadores es el Nearest Neighborhood.
En una red social, un usuario particular usa un vecino con gustos e intereses similares que pueden ser encontrados calculándolos con la Pearson Correlation, colectando la data de preferencia de los primeros N-vecinos para un usuario en particular, (pesado por su similitud), la preferencia del usuario se puede predecir calculándola usando ciertas técnicas.