Magnitud absoluta

En astronomía, magnitud absoluta ('M') es la magnitud aparente, 'm', que tendría un objeto si estuviera a una distancia de 10 pársecs (alrededor de 32,616 años luz, o 3 × 1014 km) en un espacio completamente vacío sin absorción interestelar.

Magnitud absoluta de un cometa o asteroide es el brillo que tendría el astro en cuestión si estuviera situado a 1 ua tanto del Sol como de la Tierra y su ángulo de fase fuese 0°, es decir completamente iluminado por el Sol.

Cuanto más luminoso es un objeto, menor es el valor numérico de su magnitud absoluta.

Por ejemplo, una estrella de magnitud absoluta MV = 3.0 sería 100 veces más luminosa que una estrella de magnitud absoluta MV = 8.0 medida en la banda del filtro V.

[1]​ Los objetos muy luminosos pueden tener magnitudes absolutas negativas: por ejemplo, la galaxia Vía Láctea tiene una magnitud B del sistema fotométrico UBV absoluto de aproximadamente −20,8.

Las galaxias (y otras objetos extendidos) son mucho más grandes que 10 pársecs, su luz se irradia sobre una porción extendida del cielo y su brillo general no puede observarse directamente desde distancias relativamente cortas, pero se utiliza la misma convención.

La magnitud de una galaxia se define midiendo toda la luz que irradia el objeto completo, tratando ese brillo integrado como el brillo de una única fuente puntual o estelar, y calculando la magnitud de esa fuente puntual tal y como aparecería si se observara a la distancia estándar de 10 pársecs.

En consecuencia, la magnitud absoluta de cualquier objeto "es igual" a la magnitud aparente que "tendría" si estuviera a 10 parsecs de distancia.

Algunos ejemplos son Rigel (-7,0), Deneb (-7,2), Naos (-6,0) y Betelgeuse (-5,6).

La magnitud absoluta bolométrica del Sol se fija arbitrariamente, normalmente en 4,75.

[4]​[5]​ Las magnitudes absolutas de las estrellas suelen oscilar entre -10 y +20 aproximadamente.

Algunos núcleos galácticos activos (cuásares como CTA-102) pueden alcanzar magnitudes absolutas superiores a -32, lo que los convierte en los objetos persistentes más luminosos del universo observable, aunque estos objetos pueden variar de brillo en escalas de tiempo astronómicamente cortas.

[6]​ El astrónomo griego Hiparco estableció una escala numérica para describir el brillo de cada estrella que aparecía en el cielo.

Para los objetos situados en la vecindad inmediata del Sol, la magnitud absoluta M y la magnitud aparente m desde cualquier distancia d (en parsec, con 1 pc = 3,2616 años luz) están relacionadas por

donde F es el flujo radiante medido a la distancia d (en pársecs).

(en pársecs), F10 el flujo radiante medido a la distancia 10 pc.

donde se supone que la extinción por gas y polvo es despreciable.

Además, la Ley de Hubble-Lemaître complica la relación entre la magnitud absoluta y la aparente, porque la radiación observada se desplazó hacia el rango rojo del espectro.

o utilizando la magnitud aparente m y el módulo de distancia μ:

Para definir la magnitud absoluta es necesario especificar el tipo de radiación electromagnética que está siendo medida.

) en parsec por medio de: Si se conoce la paralaje (π), en segundos de arco, tenemos entonces: Por ejemplo, para Vega (α Lyr) es m = +0,03 y π = 0,129”; teniendo entonces: único en su clase, es el Sol; su magnitud visual es m = –26,75, pero la paralaje solar es la que corresponde a la unidad astronómica de distancia, la cual está contenida 206264,806248 veces en el parsec (1UA=1/206264,806248 pc), así pues pondremos este número de segundos, o sea, π = 206264,806248”, con lo cual o bien: La magnitud bolométrica Mbol, tiene en cuenta la radiación electromagnética en todas las longitudes de onda.

En el caso de las estrellas con pocas observaciones, se debe calcular asumiendo una temperatura efectiva.

Clásicamente, la diferencia en la magnitud bolométrica está relacionada con la relación de luminosidad según: Que hace por inversión: dondeː En agosto de 2015, la Unión Astronómica Internacional aprobó la Resolución B2[9]​ que define los puntos cero de las escalas absolutas y aparentes de magnitud bolométrica en unidades SI para potencia (vatios) e irradiancia (W/m²), respectivamente.

Aunque las magnitudes bolométricas habían sido utilizadas por los astrónomos durante muchas décadas, había diferencias sistemáticas en las escalas de magnitud absoluta-luminosidad presentadas en varias referencias astronómicas, y ninguna normalización internacional.

Esto condujo a diferencias sistemáticas en las escalas de correcciones bolométricas, que cuando se combinan con magnitudes bolométricas absolutas asumidas incorrectamente para el Sol podrían conducir a errores sistemáticos en luminosidades estelares estimadas (y las propiedades estelares calculadas que dependen de la luminosidad estelar, tales como radios, edades y así en).

La resolución B2 define una escala absoluta de magnitud bolométrica en la que Mbol = 0 corresponde a la luminosidad L0 = 3,0128 × 1028 W con la luminosidad de punto cero L0 ajustada de manera que el Sol (con luminosidad nominal 3,828 × 1026 W) corresponde a la magnitud bolométrica absoluta Mbol,⊙ = 4,74.

Utilizando la escala UAI 2015, la irradiancia solar total nominal ("constante solar") medida en 1 unidad astronómica (1361 W/m2) corresponde a una magnitud bolométrica aparente del mbol,⊙ = −26,832 .

Para planetass y asteroides, se utiliza una definición de magnitud absoluta que es más significativa para objetos no estelares.

, se define como la magnitud aparente que tendría el objeto si estuviera a una unidad astronómica (UA) tanto del Sol como del observador, y en condiciones de oposición solar ideal (una disposición que es imposible en la práctica).

Esta relación se denomina curva de fase.

El ángulo de fase puede calcularse a partir de las distancias cuerpo-sol, observador-sol y observador-cuerpo, utilizando la ley de los cosenos