Método de Muller

Esto ofrece una convergencia más rápida que el método de la secante.

Una particularidad de este método es que puede determinar raíces complejas.

Fue presentado en 1956 por el matemático estadounidense David E. Muller (1924-2008), en el entorno del creciente número de algoritmos numéricos que surgieron con la progresiva generalización del uso de los ordenadores.

El método de Muller, por su naturaleza cuadrática, requiere tres puntos.

Así, se parte de la relación siguiente: Luego, se definen tres términos: La relación de recurrencia para este método viene dada finalmente por: La primera iteración requiere de tres puntos x0, x1 y x2, mejor cuanto más próximos a la solución buscada.