Para las interacciones fuertes, el acoplamiento entre partículas con color aumenta con la distancia, de manera aproximadamente lineal para separaciones grandes (para la interacción débil el decaimiento de la intensidad se debe a que los bosones asociados son másicos, por lo que el mecanismo de decaimiento es diferente que en el caso del electromagnetismo y la gravedad).La energía del tubo de flujo aumenta con la separación, es decir, la fuerza atractiva entre los quarks se hace más fuerte con la distancia.Llegada a una cierta longitud de tubo, la energía asociada ha crecido tanto que es lo suficientemente grande para formar un par quark-antiquark (nótese que la formación de un par de partículas requiere que la energía total sea superior a sus masas en reposo).Los quarks al interior de los hadrones están ligados por tubos de flujo entre ellos pero no con el resto del sistema; contrariamente a los quarks, los hadrones forman estados asintóticos que interaccionan débilmente a grandes distancias.Esto resulta del hecho que el confinamiento es un fenómeno de un alto acoplamiento donde dominan los efectos no-perturbativos.De hecho, ese término está asociado a una diferencia esencial entre los gluones y los fotones: los gluones tienen carga de color y pueden interaccionar entre ellos, frente a los fotones que al no poseer carga eléctrica no interaccionan entre sí.Su tratamiento cuántico es aún más complicado al no poderse realizar perturbativamente.
Animación ilustrativa del confinamiento de un par quark-antiquark. A medida que se suministra energía, el tubo de flujo asociado a los gluones puede elongarse, a partir de un cierto punto el tubo acumula suficiente energía para permitir la formación de un par quark-antiquark, que es una configuración más estable. Tras la formación del par se forma un nuevo mesón que se aparta del mesón original.