stringtranslate.com

Sinapsis química

Interpretación artística de los principales elementos de la transmisión química sináptica. Una onda electroquímica llamada potencial de acción viaja a lo largo del axón de una neurona . Cuando el potencial de acción alcanza la terminal presináptica, provoca la liberación de una vesícula sináptica, que secreta sus cuantos de moléculas neurotransmisoras . El neurotransmisor se une a las moléculas receptoras químicas ubicadas en la membrana de otra neurona, la neurona postsináptica, en el lado opuesto de la hendidura sináptica.

Las sinapsis químicas son uniones biológicas a través de las cuales las señales de las neuronas pueden enviarse entre sí y a células no neuronales, como las de los músculos o las glándulas . Las sinapsis químicas permiten que las neuronas formen circuitos dentro del sistema nervioso central . Son cruciales para los cálculos biológicos que sustentan la percepción y el pensamiento . Permiten que el sistema nervioso se conecte con otros sistemas del cuerpo y los controle.

En una sinapsis química, una neurona libera moléculas de neurotransmisores en un pequeño espacio (la hendidura sináptica) adyacente a otra neurona. Los neurotransmisores están contenidos en pequeños sacos llamados vesículas sinápticas y se liberan en la hendidura sináptica por exocitosis . Estas moléculas luego se unen a los receptores de neurotransmisores en la célula postsináptica. Finalmente, los neurotransmisores se eliminan de la sinapsis a través de uno de varios mecanismos posibles, incluida la degradación enzimática o la recaptación por transportadores específicos, ya sea en la célula presináptica o en alguna otra neuroglia para terminar la acción del neurotransmisor.

Se estima que el cerebro humano adulto contiene entre 10 14 y 5 × 10 14 (100–500 billones) de sinapsis. [1] Cada milímetro cúbico de corteza cerebral contiene aproximadamente mil millones ( escala corta , es decir, 10 9 ) de ellas. [2] El número de sinapsis en la corteza cerebral humana se ha estimado por separado en 0,15 cuatrillones (150 billones) [3]

La palabra "sinapsis" fue introducida por Sir Charles Scott Sherrington en 1897. [4] Las sinapsis químicas no son el único tipo de sinapsis biológicas : también existen sinapsis eléctricas e inmunológicas . Sin embargo, sin un calificativo, "sinapsis" se refiere comúnmente a las sinapsis químicas.

Estructura

Diagrama de una conexión sináptica química

Las sinapsis son conexiones funcionales entre neuronas, o entre neuronas y otros tipos de células. [5] [6] Una neurona típica da lugar a varios miles de sinapsis, aunque hay algunos tipos que producen muchas menos. [7] La ​​mayoría de las sinapsis conectan axones con dendritas , [8] [9] pero también hay otros tipos de conexiones, incluidas las de axón a cuerpo celular, [10] [11] axón a axón, [10] [11] y dendrita a dendrita . [9] Las sinapsis son generalmente demasiado pequeñas para ser reconocibles usando un microscopio óptico excepto como puntos donde las membranas de dos células parecen tocarse, pero sus elementos celulares se pueden visualizar claramente usando un microscopio electrónico .

Las sinapsis químicas transmiten información de manera direccional desde una célula presináptica a una célula postsináptica y, por lo tanto, son asimétricas en estructura y función. La terminal axónica presináptica o sinápticaEl botón es un área especializada dentro del axón de la célula presináptica que contiene neurotransmisores encerrados en pequeñas esferas unidas a una membrana llamadas vesículas sinápticas (así como una serie de otras estructuras y orgánulos de soporte, como las mitocondrias y el retículo endoplasmático ). Las vesículas sinápticas están acopladas a la membrana plasmática presináptica en regiones llamadas zonas activas .

Justo enfrente hay una región de la célula postsináptica que contiene receptores de neurotransmisores ; para las sinapsis entre dos neuronas, la región postsináptica puede encontrarse en las dendritas o el cuerpo celular. Inmediatamente detrás de la membrana postsináptica hay un complejo elaborado de proteínas interconectadas llamado densidad postsináptica (PSD).

Las proteínas de la PSD participan en el anclaje y el tráfico de receptores de neurotransmisores y en la modulación de la actividad de estos receptores. Los receptores y las PSD se encuentran a menudo en protuberancias especializadas del eje dendrítico principal llamadas espinas dendríticas .

Las sinapsis pueden describirse como simétricas o asimétricas. Cuando se examinan con un microscopio electrónico, las sinapsis asimétricas se caracterizan por vesículas redondeadas en la célula presináptica y una densidad postsináptica prominente. Las sinapsis asimétricas son típicamente excitatorias. Las sinapsis simétricas, en cambio, tienen vesículas aplanadas o alargadas y no contienen una densidad postsináptica prominente. Las sinapsis simétricas son típicamente inhibidoras.

La hendidura sináptica , también llamada brecha sináptica , es un espacio entre las células presinápticas y postsinápticas que tiene aproximadamente 20 nm (0,02 μ) de ancho. [12] El pequeño volumen de la hendidura permite que la concentración de neurotransmisores aumente y disminuya rápidamente. [13]

Una autapsis es una sinapsis química (o eléctrica) que se forma cuando el axón de una neurona hace sinapsis con sus propias dendritas.

Señalización en sinapsis químicas

Descripción general

A continuación se presenta un resumen de la secuencia de eventos que tienen lugar en la transmisión sináptica desde una neurona presináptica a una célula postsináptica. Cada paso se explica con más detalle a continuación. Tenga en cuenta que, con excepción del paso final, el proceso completo puede durar solo unos pocos cientos de microsegundos, en las sinapsis más rápidas. [14]

  1. El proceso comienza con una onda de excitación electroquímica llamada potencial de acción que viaja a lo largo de la membrana de la célula presináptica, hasta llegar a la sinapsis.
  2. La despolarización eléctrica de la membrana en la sinapsis provoca la apertura de canales permeables a los iones de calcio.
  3. Los iones de calcio fluyen a través de la membrana presináptica, aumentando rápidamente la concentración de calcio en el interior.
  4. La alta concentración de calcio activa un conjunto de proteínas sensibles al calcio unidas a vesículas que contienen una sustancia química neurotransmisora .
  5. Estas proteínas cambian de forma, provocando que las membranas de algunas vesículas "atracadas" se fusionen con la membrana de la célula presináptica, abriendo así las vesículas y vertiendo su contenido de neurotransmisores en la hendidura sináptica, el estrecho espacio entre las membranas de las células pre y postsinápticas.
  6. El neurotransmisor se difunde dentro de la hendidura. Una parte se escapa, pero otra se une a las moléculas receptoras químicas ubicadas en la membrana de la célula postsináptica.
  7. La unión del neurotransmisor hace que la molécula receptora se active de alguna manera. Existen varios tipos de activación posibles, como se describe con más detalle a continuación. En cualquier caso, este es el paso clave mediante el cual el proceso sináptico afecta el comportamiento de la célula postsináptica.
  8. Debido a la vibración térmica , el movimiento de los átomos que vibran alrededor de sus posiciones de equilibrio en un sólido cristalino, las moléculas de neurotransmisores eventualmente se desprenden de los receptores y se alejan.
  9. El neurotransmisor es reabsorbido por la célula presináptica y luego reempaquetado para su futura liberación, o bien se descompone metabólicamente.

Liberación de neurotransmisores

La liberación del neurotransmisor ocurre al final de las ramas axónicas.

La liberación de un neurotransmisor se desencadena por la llegada de un impulso nervioso (o potencial de acción ) y ocurre a través de un proceso inusualmente rápido de secreción celular ( exocitosis ). Dentro de la terminal nerviosa presináptica, las vesículas que contienen neurotransmisores se localizan cerca de la membrana sináptica. El potencial de acción que llega produce una afluencia de iones de calcio a través de canales iónicos dependientes del voltaje y selectivos del calcio en el recorrido descendente del potencial de acción (corriente de cola). [15] Los iones de calcio luego se unen a las proteínas sinaptotagminas que se encuentran dentro de las membranas de las vesículas sinápticas, lo que permite que las vesículas se fusionen con la membrana presináptica. [16] La fusión de una vesícula es un proceso estocástico , que conduce a un fallo frecuente de la transmisión sináptica en las sinapsis muy pequeñas que son típicas del sistema nervioso central . Las sinapsis químicas grandes (por ejemplo, la unión neuromuscular ), por otro lado, tienen una probabilidad de liberación sináptica, en efecto, de 1. La fusión de vesículas es impulsada por la acción de un conjunto de proteínas en la terminal presináptica conocidas como SNARE . En su conjunto, el complejo proteico o estructura que media el acoplamiento y la fusión de vesículas presinápticas se denomina zona activa. [17] La ​​membrana añadida por el proceso de fusión se recupera posteriormente por endocitosis y se recicla para la formación de vesículas nuevas llenas de neurotransmisores.

Una excepción a la tendencia general de liberación de neurotransmisores por fusión vesicular se encuentra en las células receptoras de tipo II de las papilas gustativas de los mamíferos . En ellas, el neurotransmisor ATP se libera directamente desde el citoplasma hacia la hendidura sináptica a través de canales dependientes del voltaje. [18]

Unión del receptor

Receptors on the opposite side of the synaptic gap bind neurotransmitter molecules. Receptors can respond in either of two general ways. First, the receptors may directly open ligand-gated ion channels in the postsynaptic cell membrane, causing ions to enter or exit the cell and changing the local transmembrane potential.[14] The resulting change in voltage is called a postsynaptic potential. In general, the result is excitatory in the case of depolarizing currents, and inhibitory in the case of hyperpolarizing currents. Whether a synapse is excitatory or inhibitory depends on what type(s) of ion channel conduct the postsynaptic current(s), which in turn is a function of the type of receptors and neurotransmitter employed at the synapse. The second way a receptor can affect membrane potential is by modulating the production of chemical messengers inside the postsynaptic neuron. These second messengers can then amplify the inhibitory or excitatory response to neurotransmitters.[14]

Termination

After a neurotransmitter molecule binds to a receptor molecule, it must be removed to allow for the postsynaptic membrane to continue to relay subsequent EPSPs and/or IPSPs. This removal can happen through one or more processes:

Synaptic strength

The strength of a synapse has been defined by Bernard Katz as the product of (presynaptic) release probability pr, quantal size q (the postsynaptic response to the release of a single neurotransmitter vesicle, a 'quantum'), and n, the number of release sites. "Unitary connection" usually refers to an unknown number of individual synapses connecting a presynaptic neuron to a postsynaptic neuron. The amplitude of postsynaptic potentials (PSPs) can be as low as 0.4 mV to as high as 20 mV.[20] The amplitude of a PSP can be modulated by neuromodulators or can change as a result of previous activity. Changes in the synaptic strength can be short-term, lasting seconds to minutes, or long-term (long-term potentiation, or LTP), lasting hours. Learning and memory are believed to result from long-term changes in synaptic strength, via a mechanism known as synaptic plasticity.

Receptor desensitization

Desensitization of the postsynaptic receptors is a decrease in response to the same neurotransmitter stimulus. It means that the strength of a synapse may in effect diminish as a train of action potentials arrive in rapid succession – a phenomenon that gives rise to the so-called frequency dependence of synapses. The nervous system exploits this property for computational purposes, and can tune its synapses through such means as phosphorylation of the proteins involved.

Synaptic plasticity

Synaptic transmission can be changed by previous activity. These changes are called synaptic plasticity and may result in either a decrease in the efficacy of the synapse, called depression, or an increase in efficacy, called potentiation. These changes can either be long-term or short-term. Forms of short-term plasticity include synaptic fatigue or depression and synaptic augmentation. Forms of long-term plasticity include long-term depression and long-term potentiation. Synaptic plasticity can be either homosynaptic (occurring at a single synapse) or heterosynaptic (occurring at multiple synapses).

Homosynaptic plasticity

La plasticidad homosináptica (o también modulación homotrópica) es un cambio en la fuerza sináptica que resulta de la historia de actividad en una sinapsis particular. Esto puede ser resultado de cambios en el calcio presináptico, así como de la retroalimentación sobre los receptores presinápticos, es decir, una forma de señalización autocrina . La plasticidad homosináptica puede afectar el número y la tasa de reposición de vesículas o puede afectar la relación entre el calcio y la liberación de vesículas. La plasticidad homosináptica también puede ser de naturaleza postsináptica. Puede resultar en un aumento o disminución de la fuerza sináptica.

Un ejemplo son las neuronas del sistema nervioso simpático (SNS), que liberan noradrenalina , que, además de afectar a los receptores postsinápticos, también afecta a los receptores α2-adrenérgicos presinápticos , inhibiendo la liberación adicional de noradrenalina. [21] Este efecto se utiliza con clonidina para realizar efectos inhibidores en el SNS.

Plasticidad heterosináptica

La plasticidad heterosináptica (o también modulación heterotrópica) es un cambio en la fuerza sináptica que resulta de la actividad de otras neuronas. Nuevamente, la plasticidad puede alterar el número de vesículas o su tasa de reposición o la relación entre el calcio y la liberación de vesículas. Además, podría afectar directamente la entrada de calcio. La plasticidad heterosináptica también puede ser de naturaleza postsináptica, afectando la sensibilidad del receptor.

Un ejemplo son nuevamente las neuronas del sistema nervioso simpático , que liberan noradrenalina , la cual, además, genera un efecto inhibidor sobre las terminales presinápticas de las neuronas del sistema nervioso parasimpático . [21]

Integración de entradas sinápticas

En general, si una sinapsis excitatoria es lo suficientemente fuerte, un potencial de acción en la neurona presináptica desencadenará un potencial de acción en la célula postsináptica. En muchos casos, el potencial postsináptico excitatorio (PSPE) no alcanzará el umbral para generar un potencial de acción. Cuando los potenciales de acción de múltiples neuronas presinápticas se activan simultáneamente, o si una sola neurona presináptica se activa a una frecuencia lo suficientemente alta, los PSPE pueden superponerse y sumarse. Si se superponen suficientes PSPE, el PSPE sumado puede alcanzar el umbral para iniciar un potencial de acción. Este proceso se conoce como suma y puede servir como un filtro de paso alto para las neuronas. [22]

Por otra parte, una neurona presináptica que libera un neurotransmisor inhibidor, como el GABA , puede provocar un potencial postsináptico inhibidor (IPSP) en la neurona postsináptica, alejando el potencial de membrana del umbral, disminuyendo su excitabilidad y haciendo más difícil que la neurona inicie un potencial de acción. Si un IPSP se superpone con un EPSP, el IPSP puede en muchos casos impedir que la neurona dispare un potencial de acción. De esta manera, la salida de una neurona puede depender de la entrada de muchas neuronas diferentes, cada una de las cuales puede tener un grado diferente de influencia, dependiendo de la fuerza y ​​el tipo de sinapsis con esa neurona. John Carew Eccles realizó algunos de los primeros experimentos importantes sobre la integración sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963.

Transmisión de volumen

Cuando se libera un neurotransmisor en una sinapsis, alcanza su concentración más alta dentro del estrecho espacio de la hendidura sináptica, pero es seguro que una parte se difunde antes de ser reabsorbida o degradada. Si se difunde, tiene el potencial de activar receptores que se encuentran en otras sinapsis o en la membrana alejada de cualquier sinapsis. La actividad extrasináptica de un neurotransmisor se conoce como transmisión de volumen . [23] Está bien establecido que tales efectos ocurren en algún grado, pero su importancia funcional ha sido durante mucho tiempo un tema de controversia. [24]

Trabajos recientes indican que la transmisión de volumen puede ser el modo predominante de interacción para algunos tipos especiales de neuronas. En la corteza cerebral de los mamíferos, una clase de neuronas llamadas células neurogliaformes pueden inhibir a otras neuronas corticales cercanas al liberar el neurotransmisor GABA en el espacio extracelular. [25] En la misma línea, el GABA liberado desde las células neurogliaformes al espacio extracelular también actúa sobre los astrocitos circundantes , asignando un papel para la transmisión de volumen en el control de la homeostasis iónica y de neurotransmisores. [26] Aproximadamente el 78% de los botones de las células neurogliaformes no forman sinapsis clásicas. Este puede ser el primer ejemplo definitivo de neuronas que se comunican químicamente donde no hay sinapsis clásicas. [25]

Relación con las sinapsis eléctricas

An electrical synapse is an electrically conductive link between two abutting neurons that is formed at a narrow gap between the pre- and postsynaptic cells, known as a gap junction. At gap junctions, cells approach within about 3.5 nm of each other, rather than the 20 to 40 nm distance that separates cells at chemical synapses.[27][28] As opposed to chemical synapses, the postsynaptic potential in electrical synapses is not caused by the opening of ion channels by chemical transmitters, but rather by direct electrical coupling between both neurons. Electrical synapses are faster than chemical synapses.[13] Electrical synapses are found throughout the nervous system, including in the retina, the reticular nucleus of the thalamus, the neocortex, and in the hippocampus.[29] While chemical synapses are found between both excitatory and inhibitory neurons, electrical synapses are most commonly found between smaller local inhibitory neurons. Electrical synapses can exist between two axons, two dendrites, or between an axon and a dendrite.[30][31] In some fish and amphibians, electrical synapses can be found within the same terminal of a chemical synapse, as in Mauthner cells.[32]

Effects of drugs

One of the most important features of chemical synapses is that they are the site of action for the majority of psychoactive drugs. Synapses are affected by drugs, such as curare, strychnine, cocaine, morphine, alcohol, LSD, and countless others. These drugs have different effects on synaptic function, and often are restricted to synapses that use a specific neurotransmitter. For example, curare is a poison that stops acetylcholine from depolarizing the postsynaptic membrane, causing paralysis. Strychnine blocks the inhibitory effects of the neurotransmitter glycine, which causes the body to pick up and react to weaker and previously ignored stimuli, resulting in uncontrollable muscle spasms. Morphine acts on synapses that use endorphin neurotransmitters, and alcohol increases the inhibitory effects of the neurotransmitter GABA. LSD interferes with synapses that use the neurotransmitter serotonin. Cocaine blocks reuptake of dopamine and therefore increases its effects.

History and etymology

During the 1950s, Bernard Katz and Paul Fatt observed spontaneous miniature synaptic currents at the frog neuromuscular junction.[33] Based on these observations, they developed the 'quantal hypothesis' that is the basis for our current understanding of neurotransmitter release as exocytosis and for which Katz received the Nobel Prize in Physiology or Medicine in 1970.[34] In the late 1960s, Ricardo Miledi and Katz advanced the hypothesis that depolarization-induced influx of calcium ions triggers exocytosis.

Sir Charles Scott Sherringtonin coined the word 'synapse' and the history of the word was given by Sherrington in a letter he wrote to John Fulton:

'I felt the need of some name to call the junction between nerve-cell and nerve-cell... I suggested using "syndesm"... He [ Sir Michael Foster ] consulted his Trinity friend Verrall, the Euripidean scholar, about it, and Verrall suggested "synapse" (from the Greek "clasp").'–Charles Scott Sherrington[4]

See also

Notes

  1. ^ Drachman D (2005). "¿Tenemos cerebro de sobra?". Neurología . 64 (12): 2004–5. doi :10.1212/01.WNL.0000166914.38327.BB. PMID  15985565. S2CID  38482114.
  2. ^ Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J (septiembre de 2008). "Diferencias de género en la densidad sináptica cortical humana". Proc. Natl. Sci. USA . 105 (38): 14615–9. Bibcode :2008PNAS..10514615A. doi : 10.1073/pnas.0803652105 . PMC 2567215 . PMID  18779570. 
  3. ^ Datos y cifras sobre el cerebro. Universidad de Washington.
  4. ^ ab Cowan, W. Maxwell; Südhof, Thomas C.; Stevens, Charles F. (2003). Sinapsis. JHU Press. pág. 11. ISBN 9780801871184. Recuperado el 9 de junio de 2020 .
  5. ^ Rapport, Richard L. (2005). Terminaciones nerviosas: el descubrimiento de la sinapsis. WW Norton & Company. pp. 1–37. ISBN 978-0-393-06019-5.
  6. ^ Squire, Larry R.; Floyd Bloom; Nicholas Spitzer (2008). Neurociencia fundamental. Academic Press. págs. 425-6. ISBN 978-0-12-374019-9.
  7. ^ Hyman, Steven E.; Eric Jonathan Nestler (1993). Los fundamentos moleculares de la psiquiatría. American Psychiatric Pub., págs. 425-426. ISBN 978-0-88048-353-7.
  8. ^ Smilkstein, Rita (2003). Nacimos para aprender: uso del proceso natural de aprendizaje del cerebro para crear el currículo actual. Corwin Press. pág. 56. ISBN 978-0-7619-4642-7.
  9. ^ ab Lytton, William W. (2002). De la computadora al cerebro: fundamentos de la neurociencia computacional. Springer. pág. 28. ISBN 978-0-387-95526-1.Los axones que conectan dendritas con dendritas son sinapsis dendrodendríticas. Los axones que conectan axones con dendritas se denominan sinapsis axodendríticas.
  10. ^ ab Garber, Steven D. (2002). Biología: una guía de autoaprendizaje . John Wiley and Sons. pág. 175. ISBN 978-0-471-22330-6Las sinapsis conectan los axones al cuerpo celular.
  11. ^ ab Weiss, Mirin; Dr. Steven M. Mirin; Dra. Roxanne Bartel (1994). Cocaína. American Psychiatric Pub. pág. 52. ISBN 978-1-58562-138-5. Consultado el 26 de diciembre de 2008 .Los axones que terminan en el cuerpo celular postsináptico son sinapsis axosomáticas. Los axones que terminan en axones son sinapsis axoaxónicas.
  12. ^ Widrow, Bernard; Kim, Youngsik; Park, Dookun; Perin, Jose Krause (2019). "La regla de aprendizaje de la naturaleza". Inteligencia artificial en la era de las redes neuronales y la computación cerebral . Elsevier. págs. 1–30. doi :10.1016/b978-0-12-815480-9.00001-3. ISBN. 978-0-12-815480-9.S2CID125516633  .​
  13. ^ ab Kandel, Schwartz y Jessell 2000, pág. 182
  14. ^ abc Bear, Mark F; Connors, Barry W; Paradiso, Michael A (2007). Neurociencia: explorando el cerebro . Filadelfia, PA: Lippincott Williams & Wilkins. págs. 113–118.
  15. ^ Llinás R, Steinberg IZ, Walton K (1981). "Relación entre la corriente de calcio presináptica y el potencial postsináptico en la sinapsis gigante del calamar". Revista Biofísica . 33 (3): 323–351. Código Bibliográfico :1981BpJ....33..323L. doi :10.1016/S0006-3495(81)84899-0. PMC 1327434 . PMID  6261850. 
  16. ^ Chapman, Edwin R. (2002). "Sinaptotagmina: ¿Un sensor de Ca2+ que desencadena la exocitosis?". Nature Reviews Molecular Cell Biology . 3 (7): 498–508. doi :10.1038/nrm855. ISSN  1471-0080. PMID  12094216. S2CID  12384262.
  17. ^ Craig C. Garner y Kang Shen. Estructura y función de las zonas activas de vertebrados e invertebrados. Estructura y organización funcional de la sinapsis. Ed: Johannes Hell y Michael Ehlers. Springer, 2008.
  18. ^ Romanov, Roman A.; Lasher, Robert S.; High, Brigit; Savidge, Logan E.; Lawson, Adam; Rogachevskaja, Olga A.; Zhao, Haitian; Rogachevsky, Vadim V.; Bystrova, Marina F.; Churbanov, Gleb D.; Adameyko, Igor; Harkany, Tibor; Yang, Ruibiao; Kidd, Grahame J.; Marambaud, Philippe; Kinnamon, John C.; Kolesnikov, Stanislav S.; Finger, Thomas E. (2018). "Sinapsis químicas sin vesículas sinápticas: neurotransmisión purinérgica a través de un complejo de señalización mitocondrial-canal CALHM1". Science Signaling . 11 (529): eaao1815. doi :10.1126/scisignal.aao1815. ISSN  1945-0877. Número  de modelo : PMID 29739879 . 
  19. ^ de Sherwood L., stikawy (2007). Fisiología humana 6.ª edición: de las células a los sistemas
  20. ^ Díaz-Ríos M, Miller MW (junio de 2006). "Regulación específica de dianas de la eficacia sináptica en el generador de patrones centrales de alimentación de Aplysia: ¿sustratos potenciales para la plasticidad conductual?". Biol. Bull . 210 (3): 215–29. doi :10.2307/4134559. JSTOR  4134559. PMID  16801496. S2CID  34154835.
  21. ^ ab Rang, HP; Dale, MM; Ritter, JM (2003). Farmacología (5.ª ed.). Edimburgo: Churchill Livingstone. pág. 129. ISBN 978-0-443-07145-4.
  22. ^ Bruce Alberts; Alexander Johnson; Julian Lewis; Martin Raff; Keith Roberts; Peter Walter, eds. (2002). "Cap. 11. Sección: Las neuronas individuales son dispositivos de computación complejos". Biología molecular de la célula (4.ª ed.). Garland Science. ISBN 978-0-8153-3218-3.
  23. ^ Zoli M, Torri C, Ferrari R, et al. (1998). "El surgimiento del concepto de transmisión de volumen". Brain Res. Brain Res. Rev. 26 ( 2–3): 136–47. doi :10.1016/S0165-0173(97)00048-9. PMID  9651506. S2CID  20495134.
  24. ^ Fuxe K, Dahlström A, Höistad M, et al. (2007). "Del mapeo de Golgi-Cajal a la caracterización basada en transmisores de las redes neuronales que conducen a dos modos de comunicación cerebral: cableado y transmisión de volumen" (PDF) . Brain Res Rev . 55 (1): 17–54. doi :10.1016/j.brainresrev.2007.02.009. hdl : 10447/9980 . PMID  17433836. S2CID  1323780.
  25. ^ ab Oláh S, Füle M, Komlósi G, et al. (2009). "Regulación de los microcircuitos corticales mediante transmisión de volumen mediada por GABA unitaria". Nature . 461 (7268): 1278–81. Bibcode :2009Natur.461.1278O. doi :10.1038/nature08503. PMC 2771344 . PMID  19865171. 
  26. ^ Rózsa M, Baka J, Bordé S, Rózsa B, Katona G, Tamás G, et al. (2015). "Transmisión unitaria del volumen GABAérgico desde las interneuronas individuales a los astrocitos en la corteza cerebral" ( PDF) . Estructura y función cerebral . 222 (1): 651–659. doi :10.1007/s00429-015-1166-9. PMID  26683686. S2CID  30728927.
  27. ^ Kandel, Schwartz y Jessell 2000, pág. 176
  28. ^ Hormuzdi y otros, 2004
  29. ^ Connors BW, Long MA (2004). "Sinapsis eléctricas en el cerebro de los mamíferos". Annu. Rev. Neurosci . 27 (1): 393–418. doi :10.1146/annurev.neuro.26.041002.131128. PMID  15217338.
  30. ^ Veruki ML, Hartveit E (diciembre de 2002). "Las sinapsis eléctricas median la transmisión de señales en la vía de los bastones de la retina de los mamíferos". J. Neurosci . 22 (24): 10558–66. doi :10.1523/JNEUROSCI.22-24-10558.2002. PMC 6758447 . PMID  12486148. 
  31. ^ Bennett MV, Pappas GD, Aljure E, Nakajima Y (marzo de 1967). "Fisiología y ultraestructura de las uniones electrotónicas. II. Núcleos electromotores espinales y medulares en peces mormíridos". J. Neurophysiol . 30 (2): 180–208. doi :10.1152/jn.1967.30.2.180. PMID  4167209.
  32. ^ Pereda AE, Rash JE, Nagy JI, Bennett MV (diciembre de 2004). "Dinámica de la transmisión eléctrica en las terminaciones de las mazas de las células de Mauthner". Brain Res. Brain Res. Rev. 47 ( 1–3): 227–44. CiteSeerX 10.1.1.662.9352 . doi :10.1016/j.brainresrev.2004.06.010. PMID  15572174. S2CID  9527518. 
  33. ^ Augustine, George J.; Kasai, Haruo (1 de febrero de 2007). "Bernard Katz, liberación de transmisores cuánticos y los fundamentos de la fisiología presináptica". The Journal of Physiology . 578 (Pt 3): 623–625. doi :10.1113/jphysiol.2006.123224. PMC 2151334 . PMID  17068096. 
  34. ^ "Premio Nobel". British Medical Journal . 4 (5729): 190. 1970-10-24. doi :10.1136/bmj.4.5729.190. PMC 1819734 . PMID  4320287. 

Referencias

Enlaces externos

Escucha este artículo ( 7 minutos )
Icono de Wikipedia hablado
Este archivo de audio se creó a partir de una revisión de este artículo con fecha del 19 de junio de 2005 y no refleja ediciones posteriores. ( 19 de junio de 2005 )