stringtranslate.com

Tamaño de población pequeño

Las poblaciones pequeñas pueden comportarse de manera diferente a las poblaciones más grandes. A menudo son el resultado de cuellos de botella poblacionales provenientes de poblaciones más grandes, lo que lleva a la pérdida de heterocigosidad y a una reducción de la diversidad genética y a la pérdida o fijación de alelos y cambios en las frecuencias alélicas . [1] Una población pequeña es entonces más susceptible a eventos estocásticos demográficos y genéticos, que pueden afectar la supervivencia a largo plazo de la población. Por lo tanto, las poblaciones pequeñas a menudo se consideran en riesgo de peligro o extinción y, a menudo, son motivo de preocupación para su conservación .

Efectos demográficos

Kakapo

La influencia de la variación estocástica en las tasas demográficas (reproductivas y de mortalidad) es mucho mayor en poblaciones pequeñas que en poblaciones grandes. La variación estocástica en las tasas demográficas hace que las poblaciones pequeñas fluctúen aleatoriamente en tamaño. Esta variación podría ser el resultado de proporciones desiguales de sexos, alta variación en el tamaño de la familia, endogamia o tamaño fluctuante de la población. [1] Cuanto menor sea la población, mayor será la probabilidad de que las fluctuaciones conduzcan a la extinción.

Un harén de elefantes marinos tiene 1 macho por cada 100 hembras, lo que da como resultado un tamaño de población efectivo de sólo 4.

Una consecuencia demográfica de un tamaño de población pequeño es la probabilidad de que todos los descendientes de una generación sean del mismo sexo, y donde es igualmente probable que se produzcan machos y hembras (ver proporción de sexos ), es fácil de calcular: está dada por ( la probabilidad de que todos los animales sean hembras es ; lo mismo se aplica a todos los machos, de ahí este resultado). Esto puede ser un problema en poblaciones muy pequeñas. En 1977, los últimos 18 kākāpō en una isla de Fiordland en Nueva Zelanda eran todos machos, aunque la probabilidad de esto sólo sería de 0,0000076 si se determina por casualidad (sin embargo, las hembras generalmente son presa de más veces que los machos y los kakapo pueden estar sujetos a la influencia sexual) . asignación ). Con una población de sólo tres individuos la probabilidad de que todos sean del mismo sexo es 0,25. Dicho de otra manera, por cada cuatro especies reducidas a tres individuos (o más precisamente a tres individuos en la población efectiva), una se extinguirá en el plazo de una generación simplemente porque todas son del mismo sexo. Si la población se mantiene en este tamaño durante varias generaciones, tal acontecimiento se vuelve casi inevitable.

Efectos ambientales

El medio ambiente puede afectar directamente la supervivencia de una pequeña población. Algunos efectos perjudiciales incluyen la variación estocástica en el medio ambiente (variación año tras año en las precipitaciones y la temperatura), que puede producir tasas de natalidad y mortalidad temporalmente correlacionadas (es decir, años "buenos" cuando las tasas de natalidad son altas y las tasas de mortalidad son bajas y los años "malos" cuando las tasas de natalidad son bajas y las tasas de mortalidad son altas) que provocan fluctuaciones en el tamaño de la población. Una vez más, las poblaciones más pequeñas tienen más probabilidades de extinguirse debido a estas fluctuaciones poblacionales generadas ambientalmente que las poblaciones grandes.

El medio ambiente también puede introducir rasgos beneficiosos para una población pequeña que promuevan su persistencia. En las poblaciones pequeñas y fragmentadas del pájaro carpintero bellotero , una inmigración mínima es suficiente para la persistencia de la población. A pesar de las posibles consecuencias genéticas de tener una población pequeña, el pájaro carpintero bellotero es capaz de evitar la extinción y la clasificación como especie en peligro de extinción debido a esta intervención ambiental que provoca la inmigración de poblaciones vecinas. [2] La inmigración promueve la supervivencia al aumentar la diversidad genética, que se discutirá en la siguiente sección como un factor dañino en poblaciones pequeñas.

Efectos genéticos

El gráfico superior muestra el tiempo de fijación para una población de 10 y el gráfico inferior muestra el tiempo de fijación para una población de 100 individuos. A medida que la población disminuye, aumenta el tiempo hasta la fijación de los alelos.

Los conservacionistas suelen estar preocupados por la pérdida de variación genética en poblaciones pequeñas. Hay dos tipos de variación genética que son importantes cuando se trata de poblaciones pequeñas:

Factores genéticos contribuyentes.

kiwi marrón

Ejemplos de consecuencias genéticas que han ocurrido en poblaciones endogámicas son altos niveles de fracaso en la eclosión, [16] [17] anomalías óseas, baja supervivencia infantil y disminución de las tasas de natalidad. Algunas poblaciones que tienen estas consecuencias son los guepardos, que sufren una baja capacidad de supervivencia infantil y una disminución en la tasa de natalidad debido a haber pasado por un cuello de botella poblacional. Los elefantes marinos del norte, que también atravesaron un cuello de botella en su población, han sufrido cambios en la estructura ósea del cráneo en la fila de dientes mandibulares inferiores. Los lobos de Isle Royale, una población restringida a la isla del Lago Superior, tienen malformaciones óseas en la columna vertebral en la región lumbosacra. Estos lobos también tienen sindactilia, que es la fusión de tejido blando entre los dedos de las patas delanteras. Este tipo de malformaciones están provocadas por depresión endogámica o carga genética . [18]

Poblaciones insulares

Las Islas Galápagos albergan un alto nivel de endemismo debido a su historia natural y geografía. Sin embargo, muchas de sus especies están en peligro de extinción debido a la introducción de especies exóticas, la pérdida de hábitat y el cambio climático.

Las poblaciones insulares a menudo también tienen poblaciones pequeñas debido al aislamiento geográfico, el hábitat limitado y los altos niveles de endemismo. Debido a que sus entornos están tan aislados, el flujo genético es deficiente dentro de las poblaciones insulares. Sin la introducción de diversidad genética a partir del flujo de genes, los alelos se fijan o se pierden rápidamente. Esto reduce la capacidad de las poblaciones insulares para adaptarse a cualquier nueva circunstancia [19] y puede resultar en mayores niveles de extinción. La mayoría de las extinciones de mamíferos, aves y reptiles desde el siglo XVII se han producido en poblaciones insulares. Además, el 20% de las especies de aves viven en islas, pero el 90% de todas las extinciones de aves se han producido en poblaciones insulares. [13] Las actividades humanas han sido la principal causa de extinciones en la isla en los últimos 50.000 años debido a la introducción de especies exóticas, la pérdida de hábitat y la sobreexplotación. [20]

El pingüino de Galápagos es una especie endémica de las islas Galápagos en peligro de extinción. Su población ha experimentado fluctuaciones extremas en el tamaño de la población debido a las perturbaciones marinas, que se han vuelto más extremas debido al cambio climático. La población ha oscilado entre 10.000 especímenes y 700. Actualmente se estima que hay alrededor de 1.000 individuos maduros. [1]

Conservación

Los esfuerzos de conservación de poblaciones pequeñas en riesgo de extinción se centran en aumentar el tamaño de la población y la diversidad genética, lo que determina la aptitud de una población y su persistencia a largo plazo. [21] Algunos métodos incluyen la cría en cautividad y el rescate genético. Estabilizar la variación en el tamaño de la familia es una forma eficaz de duplicar el tamaño efectivo de la población y se utiliza a menudo en estrategias de conservación. [1]

Ver también

Referencias

  1. ^ abcdefg Frankham, R., Briscoe, DA y Ballou, JD (2002). Introducción a la genética de la conservación . Prensa de la Universidad de Cambridge.
  2. ^ Stacey, Peter B.; Cono, Mark (1 de febrero de 1992). "Variación ambiental y persistencia de poblaciones pequeñas". Aplicaciones ecológicas . 2 (1): 18–29. doi :10.2307/1941886. ISSN  1939-5582. JSTOR  1941886. PMID  27759195. S2CID  37038826.
  3. ^ ab Universidad Purdue. "Cría en cautividad: efecto del tamaño pequeño de la población". www.purdue.edu/captivebreeding/effect-of-small-population-size/. Consultado el 1 de junio de 2017.
  4. ^ Lande, Russell y George F. Barrowclough. "Tamaño efectivo de la población, variación genética y su uso en el manejo de la población". Poblaciones viables para la conservación 87 (1987): 124.
  5. ^ Nei, Masatoshi. "Estimación de la heterocigosidad promedio y la distancia genética de un pequeño número de individuos". Genética 89.3 (1978): 583-590.
  6. ^ Lande, Russell. "Selección natural y deriva genética aleatoria en la evolución fenotípica". Evolución (1976): 314-334.
  7. ^ Lacy, Robert C. "Pérdida de diversidad genética de poblaciones gestionadas: efectos interactivos de deriva, mutación, inmigración, selección y subdivisión de la población". Biología de la conservación 1.2 (1987): 143-158.
  8. ^ TFC, Falconer, DS Mackay. "Introducción a la genética cuantitativa". Cuarto Longman Essex, Reino Unido (1996).
  9. ^ Charlesworth, D. y B. Charlesworth. "Depresión endogámica y sus consecuencias evolutivas". Revisión anual de ecología y sistemática 18.1 (1987): 237–268.
  10. ^ Newman, Dara y Diana Pilson. "Mayor probabilidad de extinción debido a la disminución del tamaño genético efectivo de la población: poblaciones experimentales de Clarkia pulchella". Evolución (1997): 354-362.
  11. ^ Saccheri, Ilik y col. "Endogamia y extinción en una metapoblación de mariposas". Naturaleza 392.6675 (1998): 491.
  12. ^ Byers, DL y DM Waller. "¿Las poblaciones de plantas purgan su carga genética? Efectos del tamaño de la población y el historial de apareamiento en la depresión endogámica". Revisión anual de ecología y sistemática 30.1 (1999): 479-513.
  13. ^ ab Frankham, R. (1997). ¿Las poblaciones insulares tienen menos variación genética que las poblaciones continentales? Herencia , 78 (3).
  14. ^ Ramstad, KM, Colbourne, RM, Robertson, HA, Allendorf, FW y Daugherty, CH (2013). Consecuencias genéticas de un siglo de protección: eventos fundadores en serie y supervivencia del kiwi pequeño (Apteryx owenii). Actas de la Royal Society of London B: Biological Sciences , 280 (1762), 20130576.
  15. ^ Aguilar, R., Quesada, M., Ashworth, L., Herrerías‐Diego, Y. y Lobo, J. (2008). "Consecuencias genéticas de la fragmentación del hábitat en poblaciones de plantas: señales susceptibles en rasgos de plantas y enfoques metodológicos". Ecología molecular , 17 (24), 5177–5188. doi :10.1111/j.1365-294X.2008.03971.x. PMID  19120995
  16. ^ Briskie, James (2004). "El fracaso de la eclosión aumenta con la gravedad de los cuellos de botella en la población de aves". PNAS . 110 (2): 558–561. doi : 10.1073/pnas.0305103101 . PMC 327186 . PMID  14699045. 
  17. ^ Brekke, Patricia (2010). "Machos sensibles: depresión endogámica en un ave en peligro de extinción". Proc. R. Soc. B . 277 (1700): 3677–3684. doi : 10.1098/rspb.2010.1144 . PMC 2982255 . PMID  20591862. 
  18. ^ Raikkonen, J. y col. 2009. Deformidades óseas congénitas y lobos consanguíneos (Canis lupus) de Isle Royale. Conservación biológica. 142: 1025-1031.
  19. ^ de Villemereuil, Pierre (2019). "Poco potencial de adaptación en un ave paseriforme amenazada". Biología actual . 29 (5): 889–894. doi : 10.1016/j.cub.2019.01.072 . PMID  30799244.
  20. ^ Instituto de Recursos Mundiales, Unión Internacional para la Conservación de la Naturaleza y los Recursos Naturales. (1992). Estrategia global de biodiversidad: Directrices de acción para salvar, estudiar y utilizar la riqueza biótica de la Tierra de manera sostenible y equitativa . Instituto de Recursos Mundiales.
  21. ^ Smith, S. y Hughes, J. (2008). La variación del ADN mitocondrial y de microsatélites define los reservorios genéticos insulares para las reintroducciones de un marsupial australiano en peligro de extinción, Perameles bougainville. Genética de la conservación, 9(3), 547.