stringtranslate.com

Isomorfismo de orden

En el campo matemático de la teoría del orden , un isomorfismo de orden es un tipo especial de función monótona que constituye una noción adecuada de isomorfismo para conjuntos parcialmente ordenados (posets). Siempre que dos posets son de orden isomórfico, se puede considerar que son "esencialmente iguales" en el sentido de que cualquiera de los órdenes se puede obtener del otro simplemente cambiando el nombre de los elementos. Dos nociones estrictamente más débiles que se relacionan con los isomorfismos de orden son las incrustaciones de orden y las conexiones de Galois . [1]

Definición

Formalmente, dados dos posets y , un isomorfismo de orden de a es una función biyectiva de a con la propiedad de que, para cada y en , si y sólo si . Es decir, es una incrustación de orden biyectiva . [2]

También es posible definir un isomorfismo de orden como una incrustación de orden sobreyectiva . Los dos supuestos que cubren todos los elementos de y que preserva los ordenamientos, son suficientes para asegurar que también sea uno a uno, porque si entonces (por el supuesto que preserva el orden) se seguiría que y , implicando por la definición de una orden parcial que .

Otra caracterización más de los isomorfismos de orden es que son exactamente biyecciones monótonas que tienen una inversa monótona. [3]

Un isomorfismo de orden de un conjunto parcialmente ordenado consigo mismo se llama automorfismo de orden . [4]

Cuando se impone una estructura algebraica adicional a los posets y , una función de a debe satisfacer propiedades adicionales para ser considerada un isomorfismo. Por ejemplo, dados dos grupos parcialmente ordenados (grupos po) y , un isomorfismo de grupos po desde a es un isomorfismo de orden que también es un isomorfismo de grupo , no simplemente una biyección que es una incrustación de orden . [5]

Ejemplos

Tipos de orden

Si es un isomorfismo de orden, también lo es su función inversa . Además, si es un isomorfismo de orden de a y es un isomorfismo de orden de a , entonces la composición de funciones de y es en sí misma un isomorfismo de orden, de a . [10]

Se dice que dos conjuntos parcialmente ordenados son isomorfos de orden cuando existe un isomorfismo de orden entre uno y el otro. [11] Las funciones de identidad, las inversas de funciones y las composiciones de funciones corresponden, respectivamente, a las tres características que definen una relación de equivalencia : reflexividad , simetría y transitividad . Por tanto, el isomorfismo de orden es una relación de equivalencia. La clase de conjuntos parcialmente ordenados puede dividirse en clases de equivalencia , familias de conjuntos parcialmente ordenados que son todos isomórficos entre sí. Estas clases de equivalencia se denominan tipos de órdenes .

Ver también

Notas

  1. ^ Bloch (2011); Ciesielski (1997).
  2. ^ Ésta es la definición utilizada por Ciesielski (1997). Para Bloch (2011) y Schröder (2003) es consecuencia de una definición diferente.
  3. ^ Ésta es la definición utilizada por Bloch (2011) y Schröder (2003).
  4. ^ Schröder (2003), pág. 13.
  5. ^ Esta definición es equivalente a la definición establecida en Fuchs (1963).
  6. ^ Véase el ejemplo 4 de Ciesielski (1997), p. 39., para ver un ejemplo similar con números enteros en lugar de números reales.
  7. ^ Ciesielski (1997), ejemplo 1, p. 39.
  8. ^ Bhattacharjee, Meenaxi; Macpherson, Dugald; Möller, Rögnvaldur G.; Neumann, Peter M. (1997), "Números racionales", Notas sobre grupos de permutación infinitos , Textos y lecturas de matemáticas, vol. 12, Berlín: Springer-Verlag, págs. 77–86, doi :10.1007/978-93-80250-91-5_9, ISBN 81-85931-13-5, señor  1632579
  9. ^ Girgensohn, Roland (1996), "Construcción de funciones singulares mediante fracciones de Farey", Journal of Mathematical Analysis and Applications , 203 (1): 127–141, doi : 10.1006/jmaa.1996.0370 , MR  1412484
  10. ^ Ciesielski (1997); Schröder (2003).
  11. ^ Ciesielski (1997).

Referencias