stringtranslate.com

Gunpowder

Gunpowder for muzzleloading firearms in granulation size
American Civil War re-enactors volley firing with black powder
Flash pan starter dispenser

Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, charcoal (which is mostly carbon), and potassium nitrate (saltpeter). The sulfur and charcoal act as fuels while the saltpeter is an oxidizer.[1][2] Gunpowder has been widely used as a propellant in firearms, artillery, rocketry, and pyrotechnics, including use as a blasting agent for explosives in quarrying, mining, building pipelines, tunnels,[3] and roads.

Gunpowder is classified as a low explosive because of its relatively slow decomposition rate and consequently low brisance (breaking/shattering). Low explosives deflagrate (i.e., burn at subsonic speeds), whereas high explosives detonate, producing a supersonic shockwave. Ignition of gunpowder packed behind a projectile generates enough pressure to force the shot from the muzzle at high speed, but usually not enough force to rupture the gun barrel. It thus makes a good propellant but is less suitable for shattering rock or fortifications with its low-yield explosive power. Nonetheless, it was widely used to fill fused artillery shells (and used in mining and civil engineering projects) until the second half of the 19th century, when the first high explosives were put into use.

Gunpowder is one of the Four Great Inventions of China.[4] Originally developed by Taoists for medicinal purposes, it was first used for warfare around AD 904.[5] Its use in weapons has declined due to smokeless powder replacing it, and it is no longer used for industrial purposes due to its relative inefficiency compared to newer alternatives such as dynamite and ammonium nitrate/fuel oil.[6]

Effect

Gunpowder is a low explosive: it does not detonate, but rather deflagrates (burns quickly). This is an advantage in a propellant device, where one does not desire a shock that would shatter the gun and potentially harm the operator; however, it is a drawback when an explosion is desired. In that case, the propellant (and most importantly, gases produced by its burning) must be confined. Since it contains its own oxidizer and additionally burns faster under pressure, its combustion is capable of bursting containers such as a shell, grenade, or improvised "pipe bomb" or "pressure cooker" casings to form shrapnel.

In quarrying, high explosives are generally preferred for shattering rock. However, because of its low brisance, gunpowder causes fewer fractures and results in more usable stone compared to other explosives, making it useful for blasting slate, which is fragile,[7] or monumental stone such as granite and marble. Gunpowder is well suited for blank rounds, signal flares, burst charges, and rescue-line launches. It is also used in fireworks for lifting shells, in rockets as fuel, and in certain special effects.

Combustion converts less than half the mass of gunpowder to gas; most of it turns into particulate matter. Some of it is ejected, wasting propelling power, fouling the air, and generally being a nuisance (giving away a soldier's position, generating fog that hinders vision, etc.). Some of it ends up as a thick layer of soot inside the barrel, where it also is a nuisance for subsequent shots, and a cause of jamming an automatic weapon. Moreover, this residue is hygroscopic, and with the addition of moisture absorbed from the air forms a corrosive substance. The soot contains potassium oxide or sodium oxide that turns into potassium hydroxide, or sodium hydroxide, which corrodes wrought iron or steel gun barrels. Gunpowder arms therefore require thorough and regular cleaning to remove the residue.[8]

Gunpowder loads can be used in modern firearms as long as they are not gas-operated.[Footnote 1] The most compatible modern guns are smoothbore-barreled shotguns that are long-recoil operated with chrome-plated essential parts such as barrels and bores. Such guns have minimal fouling and corrosion and are easier to clean.[15]

History

Earliest known written formula for gunpowder, from the Wujing Zongyao of 1044 AD.
Stoneware bombs, known in Japanese as Tetsuhau (iron bomb), or in Chinese as Zhentianlei (thunder crash bomb), excavated from the Takashima shipwreck, October 2011, dated to the Mongol invasions of Japan (1274–1281 AD).

China

A 'flying-cloud thunderclap-eruptor' firing thunderclap bombs from the Huolongjing

The first confirmed reference to what can be considered gunpowder in China occurred in the 9th century AD during the Tang dynasty, first in a formula contained in the Taishang Shengzu Jindan Mijue (太上聖祖金丹秘訣) in 808, and then about 50 years later in a Taoist text known as the Zhenyuan miaodao yaolüe (真元妙道要略).[16] The Taishang Shengzu Jindan Mijue mentions a formula composed of six parts sulfur to six parts saltpeter to one part birthwort herb.[16] According to the Zhenyuan miaodao yaolüe, "Some have heated together sulfur, realgar and saltpeter with honey; smoke and flames result, so that their hands and faces have been burnt, and even the whole house where they were working burned down."[17] Based on these Taoist texts, the invention of gunpowder by Chinese alchemists was likely an accidental byproduct from experiments seeking to create the elixir of life.[18] This experimental medicine origin is reflected in its Chinese name huoyao (Chinese: 火药/火藥; pinyin: huǒ yào/xuo yɑʊ/), which means "fire medicine".[19] Saltpeter was known to the Chinese by the mid-1st century AD and was primarily produced in the provinces of Sichuan, Shanxi, and Shandong.[20] There is strong evidence of the use of saltpeter and sulfur in various medicinal combinations.[21] A Chinese alchemical text dated 492 noted saltpeter burnt with a purple flame, providing a practical and reliable means of distinguishing it from other inorganic salts, thus enabling alchemists to evaluate and compare purification techniques; the earliest Latin accounts of saltpeter purification are dated after 1200.[22]

The earliest chemical formula for gunpowder appeared in the 11th century Song dynasty text, Wujing Zongyao (Complete Essentials from the Military Classics), written by Zeng Gongliang between 1040 and 1044.[23] The Wujing Zongyao provides encyclopedia references to a variety of mixtures that included petrochemicals—as well as garlic and honey. A slow match for flame-throwing mechanisms using the siphon principle and for fireworks and rockets is mentioned. The mixture formulas in this book contain at most 50% saltpeternot enough to create an explosion, they produce an incendiary instead.[23] The Essentials was written by a Song dynasty court bureaucrat and there is little evidence that it had any immediate impact on warfare; there is no mention of its use in the chronicles of the wars against the Tanguts in the 11th century, and China was otherwise mostly at peace during this century. However, it had already been used for fire arrows since at least the 10th century. Its first recorded military application dates its use to 904 in the form of incendiary projectiles.[5] In the following centuries various gunpowder weapons such as bombs, fire lances, and the gun appeared in China.[24][25] Explosive weapons such as bombs have been discovered in a shipwreck off the shore of Japan dated from 1281, during the Mongol invasions of Japan.[26]

By 1083 the Song court was producing hundreds of thousands of fire arrows for their garrisons.[27] Bombs and the first proto-guns, known as "fire lances", became prominent during the 12th century and were used by the Song during the Jin-Song Wars. Fire lances were first recorded to have been used at the Siege of De'an in 1132 by Song forces against the Jin.[28] In the early 13th century the Jin used iron-casing bombs.[29] Projectiles were added to fire lances, and re-usable fire lance barrels were developed, first out of hardened paper, and then metal. By 1257 some fire lances were firing wads of bullets.[30][31] In the late 13th century metal fire lances became 'eruptors', proto-cannons firing co-viative projectiles (mixed with the propellant, rather than seated over it with a wad), and by 1287 at the latest, had become true guns, the hand cannon.[32]

Middle East

According to Iqtidar Alam Khan, it was invading Mongols who introduced gunpowder to the Islamic world.[33] The Muslims acquired knowledge of gunpowder sometime between 1240 and 1280, by which point the Syrian Hasan al-Rammah had written recipes, instructions for the purification of saltpeter, and descriptions of gunpowder incendiaries. It is implied by al-Rammah's usage of "terms that suggested he derived his knowledge from Chinese sources" and his references to saltpeter as "Chinese snow" (Arabic: ثلج الصين thalj al-ṣīn), fireworks as "Chinese flowers", and rockets as "Chinese arrows" that knowledge of gunpowder arrived from China.[34] However, because al-Rammah attributes his material to "his father and forefathers", al-Hassan argues that gunpowder became prevalent in Syria and Egypt by "the end of the twelfth century or the beginning of the thirteenth".[35] In Persia saltpeter was known as "Chinese salt" (Persian: نمک چینی) namak-i chīnī)[36][37] or "salt from Chinese salt marshes" (نمک شوره چینی namak-i shūra-yi chīnī).[38][39]

Hasan al-Rammah included 107 gunpowder recipes in his text al-Furusiyyah wa al-Manasib al-Harbiyya (The Book of Military Horsemanship and Ingenious War Devices), 22 of which are for rockets. If one takes the median of 17 of these 22 compositions for rockets (75% nitrates, 9.06% sulfur, and 15.94% charcoal), it is nearly identical to the modern reported ideal recipe of 75% potassium nitrate, 10% sulfur, and 15% charcoal.[35] The text also mentions fuses, incendiary bombs, naphtha pots, fire lances, and an illustration and description of the earliest torpedo. The torpedo was called the "egg which moves itself and burns".[40] Two iron sheets were fastened together and tightened using felt. The flattened pear-shaped vessel was filled with gunpowder, metal filings, "good mixtures", two rods, and a large rocket for propulsion. Judging by the illustration, it was evidently supposed to glide across the water.[40][41][42] Fire lances were used in battles between the Muslims and Mongols in 1299 and 1303.[43]

Al-Hassan claims that in the Battle of Ain Jalut of 1260, the Mamluks used "the first cannon in history" against the Mongols, utilizing a formula with near-identical ideal composition ratios for explosive gunpowder.[35] Other historians urge caution regarding claims of Islamic firearms use in the 1204–1324 period, as late medieval Arabic texts used the same word for gunpowder, naft, that they used for an earlier incendiary, naphtha.[44][45]

The earliest surviving documentary evidence for cannons in the Islamic world is from an Arabic manuscript dated to the early 14th century.[46][47] The author's name is uncertain but may have been Shams al-Din Muhammad, who died in 1350.[40] Dating from around 1320–1350, the illustrations show gunpowder weapons such as gunpowder arrows, bombs, fire tubes, and fire lances or proto-guns.[42] The manuscript describes a type of gunpowder weapon called a midfa which uses gunpowder to shoot projectiles out of a tube at the end of a stock.[48] Some consider this to be a cannon while others do not. The problem with identifying cannons in early 14th century Arabic texts is the term midfa, which appears from 1342 to 1352 but cannot be proven to be true hand-guns or bombards. Contemporary accounts of a metal-barrel cannon in the Islamic world do not occur until 1365.[49] Needham believes that in its original form the term midfa refers to the tube or cylinder of a naphtha projector (flamethrower), then after the invention of gunpowder it meant the tube of fire lances, and eventually it applied to the cylinder of hand-guns and cannons.[50]

According to Paul E. J. Hammer, the Mamluks certainly used cannons by 1342.[51] According to J. Lavin, cannons were used by Moors at the siege of Algeciras in 1343. A metal cannon firing an iron ball was described by Shihab al-Din Abu al-Abbas al-Qalqashandi between 1365 and 1376.[49]

The musket appeared in the Ottoman Empire by 1465.[52] In 1598, Chinese writer Zhao Shizhen described Turkish muskets as being superior to European muskets.[53] The Chinese military book Wu Pei Chih (1621) later described Turkish muskets that used a rack-and-pinion mechanism, which was not known to have been used in European or Chinese firearms at the time.[54]

The state-controlled manufacture of gunpowder by the Ottoman Empire through early supply chains to obtain nitre, sulfur and high-quality charcoal from oaks in Anatolia contributed significantly to its expansion between the 15th and 18th century. It was not until later in the 19th century when the syndicalist production of Turkish gunpowder was greatly reduced, which coincided with the decline of its military might.[55]

Europe

Earliest depiction of a European cannon, "De Nobilitatibus Sapientii Et Prudentiis Regum", Walter de Milemete, 1326.
De la pirotechnia, 1540

The earliest Western accounts of gunpowder appear in texts written by English philosopher Roger Bacon in 1267 called Opus Majus and Opus Tertium.[56] The oldest written recipes in continental Europe were recorded under the name Marcus Graecus or Mark the Greek between 1280 and 1300 in the Liber Ignium, or Book of Fires.[57]

Some sources mention possible gunpowder weapons being deployed by the Mongols against European forces at the Battle of Mohi in 1241.[58][59][60] Professor Kenneth Warren Chase credits the Mongols for introducing into Europe gunpowder and its associated weaponry.[61] However, there is no clear route of transmission,[62] and while the Mongols are often pointed to as the likeliest vector, Timothy May points out that "there is no concrete evidence that the Mongols used gunpowder weapons on a regular basis outside of China."[63] May also states, "however [, ...] the Mongols used the gunpowder weapon in their wars against the Jin, the Song and in their invasions of Japan."[63]

Records show that, in England, gunpowder was being made in 1346 at the Tower of London; a powder house existed at the Tower in 1461, and in 1515 three King's gunpowder makers worked there.[64] Gunpowder was also being made or stored at other royal castles, such as Portchester.[65] The English Civil War (1642–1645) led to an expansion of the gunpowder industry, with the repeal of the Royal Patent in August 1641.[64]

In late 14th century Europe, gunpowder was improved by corning, the practice of drying it into small clumps to improve combustion and consistency.[66] During this time, European manufacturers also began regularly purifying saltpeter, using wood ashes containing potassium carbonate to precipitate calcium from their dung liquor, and using ox blood, alum, and slices of turnip to clarify the solution.[66]

During the Renaissance, two European schools of pyrotechnic thought emerged, one in Italy and the other at Nuremberg, Germany.[67] In Italy, Vannoccio Biringuccio, born in 1480, was a member of the guild Fraternita di Santa Barbara but broke with the tradition of secrecy by setting down everything he knew in a book titled De la pirotechnia, written in vernacular. It was published posthumously in 1540, with 9 editions over 138 years, and also reprinted by MIT Press in 1966.[66]

By the mid-17th century fireworks were used for entertainment on an unprecedented scale in Europe, being popular even at resorts and public gardens.[68] With the publication of Deutliche Anweisung zur Feuerwerkerey (1748), methods for creating fireworks were sufficiently well-known and well-described that "Firework making has become an exact science."[69] In 1774 Louis XVI ascended to the throne of France at age 20. After he discovered that France was not self-sufficient in gunpowder, a Gunpowder Administration was established; to head it, the lawyer Antoine Lavoisier was appointed. Although from a bourgeois family, after his degree in law Lavoisier became wealthy from a company set up to collect taxes for the Crown; this allowed him to pursue experimental natural science as a hobby.