En geometría , una esfera circunscrita de un poliedro es una esfera que contiene al poliedro y toca cada uno de los vértices del poliedro . [1] La palabra circunsfera se usa a veces para significar lo mismo, por analogía con el término circuncírculo . [2] Como en el caso de los círculos circunscritos bidimensionales (circuncírculos), el radio de una esfera circunscrita alrededor de un poliedro P se llama circunradio de P , [3] y el punto central de esta esfera se llama circuncentro de P. [4]
Cuando existe, una esfera circunscrita no tiene por qué ser necesariamente la esfera más pequeña que contiene el poliedro ; por ejemplo, el tetraedro formado por un vértice de un cubo y sus tres vecinos tiene la misma circunsfera que el cubo mismo, pero puede estar contenido dentro de una esfera más pequeña que tenga los tres vértices vecinos en su ecuador. Sin embargo, la esfera más pequeña que contiene un poliedro dado es siempre la circunsfera de la envoltura convexa de un subconjunto de los vértices del poliedro. [5]
En De solidorum elementis (circa 1630), René Descartes observó que, para un poliedro con una esfera circunscrita, todas las caras tienen círculos circunscritos, los círculos donde el plano de la cara se encuentra con la esfera circunscrita. Descartes sugirió que esta condición necesaria para la existencia de una esfera circunscrita es suficiente, pero no es cierto: algunas bipirámides , por ejemplo, pueden tener círculos circunscritos para sus caras (todas las cuales son triángulos) pero aún así no tienen una esfera circunscrita para todo el poliedro. Sin embargo, siempre que un poliedro simple tiene un círculo circunscrito para cada una de sus caras, también tiene una esfera circunscrita. [6]
La esfera circunscrita es el análogo tridimensional del círculo circunscrito . Todos los poliedros regulares tienen esferas circunscritas, pero la mayoría de los poliedros irregulares no tienen una, ya que en general no todos los vértices se encuentran en una esfera común. La esfera circunscrita (cuando existe) es un ejemplo de una esfera límite , una esfera que contiene una forma dada. Es posible definir la esfera límite más pequeña para cualquier poliedro y calcularla en tiempo lineal . [5]
Otras esferas definidas para algunos poliedros, pero no para todos, incluyen una esfera media , una esfera tangente a todos los bordes de un poliedro, y una esfera inscrita , una esfera tangente a todas las caras de un poliedro. En los poliedros regulares , la esfera inscrita, la esfera media y la esfera circunscrita existen todas y son concéntricas . [7]
Cuando la esfera circunscrita es el conjunto de infinitos puntos límites del espacio hiperbólico , el poliedro que ella circunscribe se denomina poliedro ideal .
Existen cinco poliedros regulares convexos , conocidos como sólidos platónicos . Todos los sólidos platónicos tienen esferas circunscritas. Para un punto arbitrario en la esfera circunscrita de cada sólido platónico con número de vértices , si son las distancias a los vértices , entonces [8]
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)