stringtranslate.com

Historia de la supercomputación

Una supercomputadora Cray-1 conservada en el Deutsches Museum

La historia de la supercomputación se remonta a la década de 1960, cuando Seymour Cray diseñó una serie de computadoras en Control Data Corporation (CDC) para utilizar diseños innovadores y paralelismo para lograr un rendimiento computacional máximo superior. [1] El CDC 6600 , lanzado en 1964, se considera generalmente el primer superordenador. [2] [3] Sin embargo, algunas computadoras anteriores fueron consideradas supercomputadoras para su época, como la IBM NORC de 1954 en la década de 1950, [4] y a principios de la década de 1960, la UNIVAC LARC (1960), [5] la IBM 7030 Stretch (1962), [6] y el Manchester Atlas (1962), todos [ especifique ] de poder comparable. [ cita necesaria ]

Mientras que las supercomputadoras de la década de 1980 utilizaban sólo unos pocos procesadores, en la década de 1990 comenzaron a aparecer máquinas con miles de procesadores tanto en Estados Unidos como en Japón, estableciendo nuevos récords de rendimiento computacional.

A finales del siglo XX, se construyeron supercomputadoras masivamente paralelas con miles de procesadores "listos para usar" similares a los que se encuentran en las computadoras personales y rompieron la barrera computacional de los teraFLOPS .

Los avances en la primera década del siglo XXI fueron espectaculares y aparecieron supercomputadoras con más de 60.000 procesadores, que alcanzaron niveles de rendimiento de petaFLOPS.

Inicios: años 50 y 60

El término "Super Computación" se utilizó por primera vez en el New York World en 1929 [7] para referirse a los grandes tabuladores personalizados que IBM había fabricado para la Universidad de Columbia . [8]

En 1957, un grupo de ingenieros abandonó Sperry Corporation para formar Control Data Corporation (CDC) en Minneapolis , Minnesota. Seymour Cray dejó Sperry un año después para unirse a sus colegas de los CDC. [1] En 1960, Cray completó el CDC 1604 , uno de la primera generación de computadoras transistorizadas comercialmente exitosas y, en el momento de su lanzamiento, la computadora más rápida del mundo. [9] Sin embargo, el único Harwell CADET totalmente transistorizado estaba operativo en 1951, e IBM entregó su IBM 7090 transistorizado comercialmente exitoso en 1959.

El CDC 6600 con la consola del sistema

Alrededor de 1960, Cray decidió diseñar una computadora que sería, con diferencia, la más rápida del mundo. Después de cuatro años de experimentación junto con Jim Thornton, Dean Roush y unos 30 ingenieros más, Cray completó el CDC 6600 en 1964. Cray cambió de transistores de germanio a transistores de silicio, construidos por Fairchild Semiconductor , que utilizaban el proceso plano. Estos no tenían los inconvenientes de los transistores de silicio de mesa. Los hizo funcionar muy rápido, y la restricción de velocidad de la luz obligó a un diseño muy compacto con graves problemas de sobrecalentamiento, que se solucionaron introduciendo refrigeración, diseñada por Dean Roush. [10] El 6600 superó al anterior poseedor del récord de la industria, el IBM 7030 Stretch , [ se necesita aclaración ] por un factor de tres. [11] [12] Con un rendimiento de hasta tres  megaFLOPS , [13] [14] fue apodado supercomputadora y definió el mercado de la supercomputación cuando se vendieron doscientas computadoras a 9 millones de dólares cada una. [9] [15]

El 6600 ganó velocidad al "transferir" trabajo a elementos informáticos periféricos, liberando a la CPU (Unidad Central de Procesamiento) para procesar datos reales. El compilador FORTRAN de Minnesota para la máquina fue desarrollado por Liddiard y Mundstock en la Universidad de Minnesota y con él el 6600 podía soportar 500 kiloflops en operaciones matemáticas estándar. [16] En 1968, Cray completó el CDC 7600 , nuevamente la computadora más rápida del mundo. [9] A 36  MHz , el 7600 tenía 3,6 veces la velocidad de reloj del 6600, pero funcionaba significativamente más rápido debido a otras innovaciones técnicas. Vendieron sólo unos 50 de los 7600, lo que no fue un fracaso. Cray dejó CDC en 1972 para formar su propia empresa. [9] Dos años después de su partida, CDC entregó el STAR-100 , que a 100 megaflops era tres veces la velocidad del 7600. Junto con el Texas Instruments ASC , el STAR-100 fue una de las primeras máquinas en utilizar procesamiento vectorial ‍ la idea se inspiró alrededor de 1964 en el lenguaje de programación APL . [17] [18]

Atlas de la Universidad de Manchester en enero de 1963.

En 1956, un equipo de la Universidad de Manchester en el Reino Unido comenzó a desarrollar MUSE ⁠ ‍ — ‍ un nombre derivado de microsegundo motor ‍ — ‍ con el objetivo de construir eventualmente una computadora que pudiera operar a velocidades de procesamiento cercanas a un microsegundo por instrucción, aproximadamente un millón de instrucciones por segundo . [19] Mu (el nombre de la letra griega μ ) es un prefijo en el SI y otros sistemas de unidades que denota un factor de 10 −6 (una millonésima).

A finales de 1958, Ferranti acordó colaborar con la Universidad de Manchester en el proyecto, y poco después la computadora pasó a llamarse Atlas , con la empresa conjunta bajo el control de Tom Kilburn . El primer Atlas se puso en servicio oficialmente el 7 de diciembre de 1962 ‍ — ‍ casi tres años antes de que se presentara la supercomputadora Cray CDC 6600 ‍ — ‍ como una de las primeras supercomputadoras del mundo . Fue considerado en el momento de su puesta en servicio como el ordenador más potente del mundo, equivalente a cuatro IBM 7094 . Se dijo que cada vez que Atlas dejaba de funcionar se perdía la mitad de la capacidad informática del Reino Unido. [20] Atlas fue pionero en la memoria virtual y la paginación como una forma de ampliar su memoria de trabajo combinando sus 16.384 palabras de memoria central primaria con 96.000 palabras adicionales de memoria de tambor secundaria . [21] Atlas también fue pionero en Atlas Supervisor , "considerado por muchos como el primer sistema operativo moderno reconocible ". [20]

La era Cray: mediados de los años 1970 y 1980

Una supercomputadora Cray-2 refrigerada por Fluorinert

Cuatro años después de dejar CDC, Cray entregó el Cray-1 de 80 MHz en 1976, que se convirtió en el superordenador de mayor éxito de la historia. [18] [22] El Cray-1, que utilizaba circuitos integrados con dos puertas por chip, era un procesador vectorial . Introdujo una serie de innovaciones, como el encadenamiento , en el que los registros escalares y vectoriales generan resultados provisionales que pueden usarse inmediatamente, sin referencias de memoria adicionales que de otro modo reducirían la velocidad computacional. [10] [23] El Cray X-MP (diseñado por Steve Chen ) fue lanzado en 1982 como un procesador vectorial paralelo de memoria compartida de 105 MHz con mejor soporte de encadenamiento y múltiples canales de memoria. Los tres gasoductos de punto flotante del X-MP podrían funcionar simultáneamente. [23] En 1983, Cray y Control Data eran líderes en supercomputadoras; A pesar de su liderazgo en el mercado general de computadoras, IBM no pudo producir un competidor rentable. [24]

El Cray-2 , lanzado en 1985, era un ordenador de cuatro procesadores refrigerado por líquido totalmente sumergido en un tanque de Fluorinert , que burbujeaba mientras funcionaba. [10] Alcanzó 1,9 gigaflops y fue la supercomputadora más rápida del mundo, y la primera en romper la barrera de los gigaflops. [25] El Cray-2 era un diseño totalmente nuevo. No usaba encadenamiento y tenía una alta latencia de memoria, pero usaba mucha canalización y era ideal para problemas que requerían grandes cantidades de memoria. [23] Los costos de software en el desarrollo de una supercomputadora no deben subestimarse, como lo demuestra el hecho de que en la década de 1980 el costo del desarrollo de software en Cray llegó a igualar lo que se gastaba en hardware. [26] Esa tendencia fue en parte responsable de un alejamiento del sistema operativo interno Cray a UNICOS basado en Unix . [26]

El Cray Y-MP , también diseñado por Steve Chen, fue lanzado en 1988 como una mejora del X-MP y podía tener ocho procesadores vectoriales a 167 MHz con un rendimiento máximo de 333 megaflops por procesador. [23] A finales de la década de 1980, el experimento de Cray sobre el uso de semiconductores de arseniuro de galio en el Cray-3 no tuvo éxito. Seymour Cray comenzó a trabajar en una computadora paralela masiva a principios de la década de 1990, pero murió en un accidente automovilístico en 1996 antes de que pudiera completarse. Cray Research, sin embargo, produjo tales computadoras. [22] [10]

Procesamiento masivo: la década de 1990

El Cray-2 , que marcó las fronteras de la supercomputación a mediados y finales de los años 1980, tenía sólo 8 procesadores. En la década de 1990 comenzaron a aparecer supercomputadoras con miles de procesadores. Otro avance a finales de la década de 1980 fue la llegada de las supercomputadoras japonesas, algunas de las cuales fueron modeladas a partir del Cray-1.

Parte posterior del gabinete Paragon que muestra las barras colectoras y los enrutadores de malla

El SX-3/44R fue anunciado por NEC Corporation en 1989 y un año después obtuvo el título más rápido del mundo con un modelo de cuatro procesadores. [27] Sin embargo, la supercomputadora Numerical Wind Tunnel de Fujitsu utilizó 166 procesadores vectoriales para obtener el primer puesto en 1994. Tenía una velocidad máxima de 1,7 gigaflops por procesador. [28] [29] El Hitachi SR2201 obtuvo un rendimiento máximo de 600 gigaflops en 1996 utilizando 2.048 procesadores conectados a través de una rápida red de barras transversales tridimensionales . [30] [31] [32]

En el mismo período, Intel Paragon podía tener entre 1.000 y 4.000 procesadores Intel i860 en varias configuraciones, y fue clasificado como el más rápido del mundo en 1993. El Paragon era una máquina MIMD que conectaba procesadores a través de una malla bidimensional de alta velocidad, permitiendo procesos ejecutar en nodos separados; comunicándose a través de la interfaz de paso de mensajes . [33] En 1995, Cray también distribuía masivamente sistemas paralelos, por ejemplo el Cray T3E con más de 2.000 procesadores, utilizando una interconexión toroidal tridimensional . [34] [35]

La arquitectura Paragon pronto dio lugar a la supercomputadora Intel ASCI Red en los Estados Unidos, que ocupó el primer lugar en supercomputación hasta finales del siglo XX como parte de la Iniciativa de Computación y Simulación Avanzada . Este también era un sistema MIMD masivamente paralelo basado en malla con más de 9.000 nodos de cómputo y más de 12 terabytes de almacenamiento en disco, pero usaba procesadores Pentium Pro disponibles en el mercado que se podían encontrar en las computadoras personales comunes. ASCI Red fue el primer sistema que superó la barrera de 1 teraflop en el punto de referencia MP- Linpack en 1996; eventualmente alcanzando los 2 teraflops. [36]

Computación a petaescala en el siglo XXI

Una supercomputadora Blue Gene /P en el Laboratorio Nacional Argonne

En la primera década del siglo XXI se lograron avances significativos. La eficiencia de las supercomputadoras siguió aumentando, pero no de manera espectacular. El Cray C90 consumía 500 kilovatios de potencia en 1991, mientras que en 2003 el ASCI Q consumía 3.000 kW y era 2.000 veces más rápido, lo que aumentaba 300 veces el rendimiento por vatio. [37]

En 2004, la supercomputadora Earth Simulator construida por NEC en la Agencia Japonesa de Ciencia y Tecnología Marina-Tierra (JAMSTEC) alcanzó 35,9 teraflops, utilizando 640 nodos, cada uno con ocho procesadores vectoriales propietarios . [38]

La arquitectura de supercomputadora IBM Blue Gene encontró un uso generalizado a principios del siglo XXI, y 27 de las computadoras en la lista TOP500 utilizaron esa arquitectura. El enfoque de Blue Gene es algo diferente en el sentido de que cambia la velocidad del procesador por un bajo consumo de energía para que se pueda utilizar una mayor cantidad de procesadores a temperaturas enfriadas por aire. Puede utilizar más de 60.000 procesadores, con 2048 procesadores "por bastidor", y los conecta mediante una interconexión toroidal tridimensional. [39] [40]

El progreso en China ha sido rápido: China ocupó el puesto 51 en la lista TOP500 en junio de 2003; A esto le siguió el puesto 14 en noviembre de 2003, el 10 en junio de 2004 y el 5 en 2005, antes de alcanzar el primer puesto en 2010 con el superordenador Tianhe-I de 2,5 petaflop. [41] [42]

En julio de 2011, la computadora japonesa K de 8,1 petaflop se convirtió en la más rápida del mundo, utilizando más de 60.000 procesadores SPARC64 VIIIfx alojados en más de 600 gabinetes. El hecho de que el ordenador K sea más de 60 veces más rápido que el Simulador de la Tierra, y que el Simulador de la Tierra esté clasificado como el sistema número 68 del mundo siete años después de ocupar el primer puesto, demuestra tanto el rápido aumento del rendimiento superior como el crecimiento generalizado de tecnología de supercomputación a nivel mundial. [43] [44] [45] Para 2014, Earth Simulator había salido de la lista y para 2018 la computadora K había salido del top 10. Para 2018, Summit se había convertido en la supercomputadora más poderosa del mundo, con 200 petaFLOPS. En 2020, los japoneses volvieron a hacerse con el primer puesto con el superordenador Fugaku , capaz de 442 PFLOPS. Finalmente, a partir de 2022 y hasta el presente (a diciembre de 2023 ), la supercomputadora más rápida del mundo se había convertido en la Hewlett Packard Enterprise Frontier , también conocida como OLCF-5 y alojada en Oak Ridge Leadership Computing Facility (OLCF) en Tennessee . Estados Unidos. Frontier se basa en Cray EX , es la primera supercomputadora a exaescala del mundo y utiliza únicamente CPU y GPU AMD ; logró un Rmax de 1.102 exaFLOPS , que son 1.102 quintillones de operaciones por segundo. [46] [47] [48] [49] [50]

Tabla histórica TOP500

Esta es una lista de las computadoras que aparecieron en la parte superior de la lista TOP500 desde 1993. [51] La "velocidad máxima" se proporciona como la calificación "Rmax".

Rápido crecimiento del rendimiento de las supercomputadoras, según datos del sitio top500.org. El eje y logarítmico muestra el rendimiento en GFLOPS.
  Rendimiento combinado de 500 supercomputadoras más grandes
  Supercomputadora más rápida
  Supercomputadora en el puesto 500

Controles de exportación

El CoCom y su posterior reemplazo, el Arreglo de Wassenaar , estaban legalmente regulados, es decir, requerían licencias, aprobación y mantenimiento de registros; o prohibir por completo la exportación de ordenadores de alto rendimiento (HPC) a determinados países. Estos controles se han vuelto más difíciles de justificar, lo que ha llevado a una flexibilización de estas regulaciones. Algunos han argumentado que estas regulaciones nunca estuvieron justificadas. [52] [53] [54 ] [55] [56] [57]

Ver también

enlaces externos


Referencias

  1. ^ ab Chen, Sao-Jie; Lin, Guang-Huei; Hsiung, Pao-Ann; Hu, Yu-Hen (2009). Codiseño hardware software de una plataforma SOC multimedia. Springer Ciencia + Medios comerciales . págs. 70–72. ISBN 9781402096235. Consultado el 20 de febrero de 2018 .
  2. ^ Impagliazzo, Juan; Lee, John AN (2004). Historia de la informática en la educación. Saltador. pag. 172.ISBN 1-4020-8135-9. Consultado el 20 de febrero de 2018 .
  3. ^ Sison, Richard; Zacher, Christian K. (2006). El Medio Oeste estadounidense: una enciclopedia interpretativa. Prensa de la Universidad de Indiana. pag. 1489.ISBN 0-253-34886-2.
  4. ^ Frank da Cruz (25 de octubre de 2013) [2004]. "IBM NORC" . Consultado el 20 de febrero de 2018 .
  5. ^ Lundstrom, David E. (1984). Algunos hombres buenos de UNIVAC. Prensa del MIT. ISBN 9780735100107. Consultado el 20 de febrero de 2018 .
  6. ^ David Lundstrom, Algunos buenos hombres de UNIVAC , página 90, enumera LARC y STRETCH como supercomputadoras.
  7. ^ Eames, Charles; Eames, Ray (1973). Una perspectiva informática . Cambridge, Masa: Harvard University Press. pag. 95.. La página 95 identifica el artículo como "Se muestran máquinas de súper computación". Mundo de Nueva York. 1 de marzo de 1920.. Sin embargo, el artículo que se muestra en la página 95 hace referencia a la Oficina de Estadística en Hamilton Hall, y un artículo en el sitio web de Columbia Computing History afirma que no existió hasta 1929. Consulte The Columbia Difference Tabulator - 1931
  8. ^ "Se muestran supermáquinas informáticas (en el mundo de Nueva York)" . Consultado el 26 de febrero de 2024 .
  9. ^ abcd Hannan, Caryn (2008). Diccionario biográfico de Wisconsin. Publicaciones de historia del estado. págs. 83–84. ISBN 978-1-878592-63-7. Consultado el 20 de febrero de 2018 .
  10. ^ abcd Murray, Charles J. (1997). Los superhombres. Wiley e hijos. ISBN 9780471048855.
  11. ^ "Diseñada por Seymour Cray, la CDC 6600 era casi tres veces más rápida que la siguiente máquina más rápida de su época, la IBM 7030 Stretch". Haciendo un mundo de diferencia: transformando ideas en realidad. Academia Nacional de Ingeniería. 2014.ISBN 978-0309312653.
  12. ^ "En 1964, el CDC 6600 de Cray reemplazó a Stretch como la computadora más rápida del mundo". Sofroniou, Andreas (2013). Sistemas Expertos, Ingeniería del Conocimiento para la Replicación Humana. Lulu.com. ISBN 978-1291595093.
  13. ^ Anthony, Sebastián (10 de abril de 2012). "La historia de las supercomputadoras". Tecnología extrema . Consultado el 2 de febrero de 2015 .
  14. ^ "CDC 6600". Enciclopedia Británica . Consultado el 2 de febrero de 2015 .
  15. ^ Ceruzzi, Paul E. (2003). Una historia de la informática moderna . Prensa del MIT. pag. 161.ISBN 978-0-262-53203-7. Consultado el 20 de febrero de 2018 .
  16. ^ Frisch, Michael J. (diciembre de 1972). "Observaciones sobre el algoritmo 352 [S22], algoritmo 385 [S13], algoritmo 392 [D3]". Comunicaciones de la ACM . 15 (12): 1074. doi : 10.1145/361598.361914 . S2CID  6571977.
  17. ^ Fosdick, Lloyd Dudley (1996). Introducción a la informática científica de alto rendimiento . Prensa del MIT. pag. 418.ISBN 0-262-06181-3.
  18. ^ ab Hill, Mark Donald; Jouppi, Norman Paul ; Sohi, Gurindar (1999). Lecturas en arquitectura de ordenadores . Profesional del Golfo. págs. 41–48. ISBN 978-1-55860-539-8.
  19. ^ "El Atlas". Universidad de Manchester. Archivado desde el original el 28 de julio de 2012 . Consultado el 21 de septiembre de 2010 .
  20. ^ ab Lavington, Simon Hugh (1998). Una historia de las computadoras de Manchester (2 ed.). Swindon: Sociedad Británica de Computación. págs. 41–52. ISBN 978-1-902505-01-5.
  21. ^ Creasy, RJ (septiembre de 1981), "El origen del sistema de tiempo compartido VM/370" (PDF) , IBM Journal of Research & Development , vol. 25, núm. 5, pág. 486
  22. ^ ab Reilly, Edwin D. (2003). Hitos en informática y tecnologías de la información . Académico de Bloomsbury. pag. 65.ISBN 1-57356-521-0.
  23. ^ abcd Tokhi, MO; Hossain, Mohammad Alamgir (2003). Computación paralela para procesamiento y control de señales en tiempo real . Saltador. págs. 201-202. ISBN 978-1-85233-599-1.
  24. ^ Greenwald, John (11 de julio de 1983). "El coloso que funciona" . Tiempo . Archivado desde el original el 14 de mayo de 2008 . Consultado el 18 de mayo de 2019 .
  25. ^ Debido a la propaganda soviética, a veces se puede leer que la supercomputadora soviética M13 fue la primera en alcanzar la barrera de los gigaflops. En realidad, la construcción de la M13 comenzó en 1984, pero no estuvo operativa antes de 1986. Rogachev Yury Vasilievich, Museo Ruso de Computadoras Virtuales
  26. ^ ab MacKenzie, Donald (1998). Máquinas conocedoras: ensayos sobre el cambio técnico . Prensa del MIT. págs. 149-151. ISBN 0-262-63188-1.
  27. ^ Glowinski, R.; Lichnewsky, A. (enero de 1990). Métodos de computación en ciencias aplicadas e ingeniería . págs. 353–360. ISBN 0-89871-264-5.
  28. ^ "Informe anual TOP500 1994". 1 de octubre de 1996.
  29. ^ Hirose, N.; Fukuda, M. (1997). Investigación en Túnel de Viento Numérico (NWT) y CFD en el Laboratorio Aeroespacial Nacional . Actas de HPC-Asia '97. Sociedad de Computación IEEE. doi :10.1109/HPC.1997.592130.
  30. ^ Fujii, H.; Yasuda, Y.; Akashi, H.; Inagami, Y.; Koga, M.; Ishihara, O.; Kashiyama, M.; Wada, H.; Sumimoto, T. (abril de 1997). Arquitectura y rendimiento del sistema de procesador masivamente paralelo Hitachi SR2201 . Actas del XI Simposio Internacional de Procesamiento Paralelo . págs. 233-241. doi :10.1109/IPPS.1997.580901. ISBN 0-8186-7793-7.
  31. ^ Iwasaki, Y. (enero de 1998). "El proyecto CP-PACS". Física Nuclear B - Suplementos de Actas . 60 (1–2): 246–254. arXiv : hep-lat/9709055 . Código Bib : 1998NuPhS..60..246I. doi :10.1016/S0920-5632(97)00487-8.
  32. ^ AJ van der Steen, Descripción general de las supercomputadoras recientes, Publicación del NCF, Stichting Nationale Computer Faciliteiten, Países Bajos, enero de 1997.
  33. ^ Reed, Daniel A. (2003). Entrada/salida escalable: lograr el equilibrio del sistema . Prensa del MIT. pag. 182.ISBN 978-0-262-68142-1.
  34. ^ "Cray vende la primera supercomputadora T3E-1350 a PhillipsPetroleum" (Presione soltar). Seattle: Grupo Gale. Cable comercial. 7 de agosto de 2000.
  35. ^ Agida, NR; et al. (et al.) (marzo-mayo de 2005). "Red de interconexión Blue Gene/L Torus" (PDF) . Revista IBM de investigación y desarrollo . 45 (2–3): 265. Archivado desde el original (PDF) el 15 de agosto de 2011 . Consultado el 9 de febrero de 2012 .
  36. ^ Greenberg, David S. (1998). Heath, Michael T. (ed.). "Habilitación de la supercomputación a escala departamental". Algoritmos de procesamiento paralelo . 105 : 323. ISBN 0-387-98680-4. Consultado el 20 de febrero de 2018 .
  37. ^ Feng, Wu-chun (1 de octubre de 2003). "Defendiendo la supercomputación eficiente". Cola ACM . 1 (7): 54–64. doi : 10.1145/957717.957772 . S2CID  11283177.
  38. ^ Sato, Tetsuya (2004). "El simulador de la Tierra: funciones e impactos". Física Nuclear B: Suplementos de actas . 129 : 102. Código bibliográfico : 2004NuPhS.129..102S. doi :10.1016/S0920-5632(03)02511-8.
  39. ^ Almasi, George; et al. (et al.) (2005). Cunha, José Cardoso; Medeiros, Pedro D. (eds.). Experiencia temprana con aplicaciones científicas en la supercomputadora Blue Gene/L. Procesamiento paralelo Euro-Par 2005: XI Conferencia Internacional Euro-Par . págs. 560–567. ISBN 9783540319252.
  40. ^ Morgan, Timothy Prickett (22 de noviembre de 2010). "IBM descubre BlueGene/Q super de 20 petaflops". El registro .
  41. ^ Graham, Susan L.; Sonríe, Marc; Patterson, Cynthia A. (2005). Poniéndose al día: el futuro de la supercomputación . Prensa de Academias Nacionales. pag. 188.ISBN 0-309-09502-6.
  42. ^ Vance, Ashlee (28 de octubre de 2010). "China arrebata el título de supercomputadora a Estados Unidos" The New York Times . Consultado el 20 de febrero de 2018 .
  43. ^ "La supercomputadora japonesa 'K' es la más rápida del mundo". El Telégrafo . 20 de junio de 2011 . Consultado el 20 de junio de 2011 .
  44. ^ "La computadora japonesa 'K' está clasificada como la más poderosa". Los New York Times . 20 de junio de 2011 . Consultado el 20 de junio de 2011 .
  45. ^ "La supercomputadora 'computadora K' ocupa el primer lugar en el mundo". Fujitsu . Consultado el 20 de junio de 2011 .
  46. ^ Wells, Jack (19 de marzo de 2018). "Impulsando el camino hacia el liderazgo nacional en HPC". OpenPOWER Summit 2018. Archivado desde el original el 4 de agosto de 2020 . Consultado el 25 de marzo de 2018 .
  47. ^ Bethea, Katie (13 de febrero de 2018). "Frontier: futuro a exaescala de OLCF - instalación de computación de liderazgo de Oak Ridge". Laboratorio Nacional Oak Ridge - Instalación de Computación de Liderazgo . Archivado desde el original el 10 de marzo de 2018.
  48. ^ "Actualización de exaescala del Subsecretario de Ciencia Dabbar del DOE". dentro de HPC . 9 de octubre de 2020. Archivado desde el original el 28 de octubre de 2020.
  49. ^ Don Clark (30 de mayo de 2022). "Estados Unidos recupera el primer puesto en la carrera de supercomputadoras". Los New York Times . Archivado desde el original el 1 de junio de 2022 . Consultado el 1 de junio de 2022 .
  50. ^ Larabel, Michael (30 de mayo de 2022). "La supercomputadora Frontier con tecnología AMD encabeza el Top500 con 1,1 exaflops y también encabeza el Green500". Forónix . Archivado desde el original el 6 de junio de 2022 . Consultado el 1 de junio de 2022 .
  51. ^ "Generador de sublistas". Top500. 2017 . Consultado el 20 de febrero de 2018 .
  52. ^ "Complejidades de establecer umbrales de control de exportaciones: computadoras". Controles de exportaciones y política de no proliferación (PDF) . Editorial DIANE. Mayo de 1994. ISBN 9781428920521.
  53. ^ Wolcott, Peter; Buen hombre, Seymour; Homero, Patrick (noviembre de 1998). "Controles de exportación de informática de alto rendimiento: navegando en aguas turbulentas". Comunicaciones de la ACM . 41 (11). Nueva York, Estados Unidos: 27–30. doi : 10.1145/287831.287836 . S2CID  18519822.
  54. ^ McLoughlin, Glenn J.; Fergusson, Ian F. (10 de febrero de 2003). Computadoras de alto rendimiento y política de control de exportaciones (PDF) (Reporte).
  55. ^ Brugger, Seth (1 de septiembre de 2000). "Estados Unidos revisa las regulaciones de control de exportaciones de computadoras". Asociación de Control de Armas .
  56. ^ "Controles de exportación para computadoras de alto rendimiento". 24 de junio de 2011.
  57. ^ Blagdon, Jeff (30 de mayo de 2013). "Estados Unidos elimina las sanciones a las exportaciones de computadoras a Irán".