stringtranslate.com

Hiperpirámide

Hiperpirámide bidimensional con un segmento de línea como base
Hiperpirámide de cuatro dimensiones con un cubo como base

En geometría , una hiperpirámide es una generalización de la pirámide normal a n dimensiones .

En el caso de la pirámide, se conectan todos los vértices de la base (un polígono en un plano) a un punto fuera del plano, que es el pico . La altura de la pirámide es la distancia del pico al plano. Esta construcción se generaliza a n dimensiones. La base se convierte en un politopo ( n 1) en un hiperplano ( n – 1) -dimensional . Un punto llamado vértice se encuentra fuera del hiperplano y se conecta a todos los vértices del politopo y la distancia del vértice al hiperplano se llama altura. Esta construcción se llama hiperpirámide n -dimensional.

Un triángulo normal es una hiperpirámide bidimensional, la pirámide triangular es una hiperpirámide tridimensional y el pentacorono o pirámide tetraédrica es una hiperpirámide tetradimensional con un tetraedro como base.

El volumen n -dimensional de una hiperpirámide n -dimensional se puede calcular de la siguiente manera: Aquí V n denota el volumen n -dimensional de la hiperpirámide, A el volumen ( n – 1) -dimensional de la base y h la altura, es decir, la distancia entre el vértice y el hiperplano ( n – 1) -dimensional que contiene la base A . Para n = 2, 3 la fórmula anterior produce las fórmulas estándar para el área de un triángulo y el volumen de una pirámide.

Referencias

Enlaces externos