Los glicolípidos son lípidos con un carbohidrato unido por un enlace glucosídico (covalente) . [1] Su función es mantener la estabilidad de la membrana celular y facilitar el reconocimiento celular , lo cual es crucial para la respuesta inmune y en las conexiones que permiten que las células se conecten entre sí para formar tejidos . [2] Los glicolípidos se encuentran en la superficie de todas las membranas celulares eucariotas , donde se extienden desde la bicapa de fosfolípidos hasta el entorno extracelular. [2]
Estructura
La característica esencial de un glicolípido es la presencia de un monosacárido u oligosacárido unido a una fracción lipídica . Los lípidos más comunes en las membranas celulares son los glicerolípidos y los esfingolípidos , que tienen cadenas principales de glicerol o esfingosina , respectivamente. Los ácidos grasos están conectados a esta cadena principal, de modo que el lípido en su conjunto tiene una cabeza polar y una cola no polar. La bicapa lipídica de la membrana celular consta de dos capas de lípidos, con las superficies interna y externa de la membrana formadas por los grupos de cabeza polar, y la parte interna de la membrana formada por las colas de ácidos grasos no polares.
Los sacáridos que están unidos a los grupos de cabeza polar en el exterior de la célula son los componentes ligando de los glicolípidos, y son igualmente polares, lo que les permite ser solubles en el entorno acuoso que rodea la célula. [3] El lípido y el sacárido forman un glicoconjugado a través de un enlace glucosídico , que es un enlace covalente . El carbono anomérico del azúcar se une a un grupo hidroxilo libre en la cadena principal del lípido. La estructura de estos sacáridos varía dependiendo de la estructura de las moléculas a las que se unen.
Metabolismo
Glicosiltransferasas
Las enzimas llamadas glicosiltransferasas unen el sacárido a la molécula lipídica y también desempeñan un papel en el ensamblaje del oligosacárido correcto para que se pueda activar el receptor correcto en la célula que responde a la presencia del glicolípido en la superficie de la célula. El glicolípido se ensambla en el aparato de Golgi y se incrusta en la superficie de una vesícula que luego se transporta a la membrana celular. La vesícula se fusiona con la membrana celular para que el glicolípido pueda presentarse en la superficie exterior de la célula. [4]
Hidrolasas de glicósidos
Las hidrolasas de glicósido catalizan la ruptura de los enlaces glucosídicos. Se utilizan para modificar la estructura de oligosacáridos del glicano después de que se haya añadido al lípido. También pueden eliminar los glicanos de los glucolípidos para convertirlos nuevamente en lípidos no modificados. [5]
Defectos en el metabolismo
Las esfingolipidosis son un grupo de enfermedades asociadas a la acumulación de esfingolípidos que no se han degradado correctamente, normalmente debido a un defecto en una enzima glicósido hidrolasa. Las esfingolipidosis suelen ser hereditarias y sus efectos dependen de qué enzima se ve afectada y del grado de deterioro. Un ejemplo notable es la enfermedad de Niemann-Pick , que puede causar dolor y daños en las redes neuronales. [6]
Función
Interacciones célula-célula
La función principal de los glicolípidos en el cuerpo es servir como sitios de reconocimiento para las interacciones entre células. El sacárido del glicolípido se unirá a un carbohidrato complementario específico o a una lectina (proteína de unión a carbohidratos) de una célula vecina. La interacción de estos marcadores de la superficie celular es la base del reconocimiento celular e inicia respuestas celulares que contribuyen a actividades como la regulación, el crecimiento y la apoptosis . [7]
Respuestas inmunes
Un ejemplo de cómo funcionan los glicolípidos dentro del cuerpo es la interacción entre los leucocitos y las células endoteliales durante la inflamación. Las selectinas , una clase de lectinas que se encuentran en la superficie de los leucocitos y las células endoteliales, se unen a los carbohidratos unidos a los glicolípidos para iniciar la respuesta inmunitaria. Esta unión hace que los leucocitos abandonen la circulación y se congreguen cerca del sitio de la inflamación. Este es el mecanismo de unión inicial, al que le sigue la expresión de integrinas que forman enlaces más fuertes y permiten que los leucocitos migren hacia el sitio de la inflamación. [8] Los glicolípidos también son responsables de otras respuestas, en particular el reconocimiento de las células huésped por parte de los virus. [9]
Tipos de sangre
Los tipos de sangre son un ejemplo de cómo los glicolípidos en las membranas celulares median las interacciones de las células con el entorno circundante. Los cuatro tipos de sangre humanos principales (A, B, AB, O) están determinados por el oligosacárido unido a un glicolípido específico en la superficie de los glóbulos rojos , que actúa como un antígeno . El antígeno no modificado, llamado antígeno H, es característico del tipo O y está presente en los glóbulos rojos de todos los tipos de sangre. El tipo de sangre A tiene una N-acetilgalactosamina añadida como principal estructura determinante, el tipo B tiene una galactosa y el tipo AB tiene estos tres antígenos. Los antígenos que no están presentes en la sangre de un individuo harán que se produzcan anticuerpos, que se unirán a los glicolípidos extraños. Por esta razón, las personas con el tipo de sangre AB pueden recibir transfusiones de todos los tipos de sangre (el aceptor universal), y las personas con el tipo de sangre O pueden actuar como donantes de todos los tipos de sangre (el donante universal). [10]
Tipos de glicolípidos
Glicoglicerolípidos: un subgrupo de glicolípidos caracterizados por un glicerol acetilado o no acetilado con al menos un ácido graso como complejo lipídico. Los gliceroglicolípidos suelen estar asociados a las membranas fotosintéticas y sus funciones. Las subcategorías de los gliceroglicolípidos dependen del carbohidrato al que están unidos. [11]
Galactolípidos : se definen como un azúcar galactosa unido a una molécula lipídica de glicerol. Se encuentran en las membranas de los cloroplastos y están asociados con propiedades fotosintéticas. [11]
Cerebrósidos : un grupo de glicoesfingolípidos implicados en las membranas de las células nerviosas. [14]
Galactocerebrósidos : un tipo de cerebrósidos con galactosa como fracción sacárida.
Glucocerebrósidos : un tipo de cerebrósido con glucosa como fracción sacárida; a menudo se encuentra en tejido no neuronal.
Sulfátidos : una clase de glicolípidos que contienen un grupo sulfato en el carbohidrato con una estructura lipídica de ceramida . Intervienen en numerosas funciones biológicas, desde la respuesta inmunitaria hasta la señalización del sistema nervioso.
Gangliósidos : los glucolípidos animales más complejos. Contienen oligosacáridos cargados negativamente con uno o más residuos de ácido siálico ; se han identificado más de 200 [15] gangliósidos diferentes. Son más abundantes en las células nerviosas.
Globosidos : glucoesfingolípidos con más de un azúcar como parte del complejo de carbohidratos. Tienen diversas funciones; la falta de degradación de estas moléculas conduce a la enfermedad de Fabry .
Glicofosfoesfingolípidos: glicofosfolípidos complejos de hongos, levaduras y plantas, donde originalmente se los llamaba "fitoglicolípidos". Pueden ser un conjunto de compuestos tan complejo como los gangliósidos con carga negativa de los animales.
Glicofosfatidilinositoles : un subgrupo de glicolípidos definidos por una fracción lipídica de fosfatidilinositol unida a un complejo de carbohidratos. Pueden unirse al extremo C de una proteína y tienen varias funciones asociadas con las diferentes proteínas a las que pueden unirse. [16]
^ Voet D, Voet J, Pratt C (2013). Fundamentos de bioquímica. La vida a nivel molecular (cuarta edición). Hoboken, Nueva Jersey: John Wiley & Sons, Inc. ISBN 9781118129180.
^ ab "Glicolípidos". Nature . Nature Publishing Group . Consultado el 1 de noviembre de 2015 .
^ Aureli M, Grassi S, Prioni S, Sonnino S, Prinetti A (agosto de 2015). "Dominios de la membrana lipídica en el cerebro". Biochimica et Biophysica Acta (BBA) - Biología molecular y celular de lípidos . 1851 (8): 1006–16. doi :10.1016/j.bbalip.2015.02.001. PMID 25677824.
^ Williams GJ, Thorson JS (2009). "Glicosiltransferasas de productos naturales: propiedades y aplicaciones". Avances en enzimología . Avances en enzimología y áreas relacionadas de la biología molecular. Vol. 76. págs. 55–119. doi :10.1002/9780470392881.ch2. ISBN9780470392881. Número de identificación personal 18990828.
^ Sinnott ML (noviembre de 1990). "Mecanismo catalítico de la transferencia enzimática de glicosilo". Chemical Reviews . 90 (7): 1171–1202. doi :10.1021/cr00105a006.
^ Sandhoff K (1974). "Esfingolipidosis". Revista de patología clínica . 8 (12): 94–105. doi :10.1136/jcp.s3-8.1.94. PMC 1347206 . PMID 4157247.
^ Schnaar RL (junio de 2004). "Reconocimiento célula-célula mediado por glucolípidos en la inflamación y la regeneración nerviosa". Archivos de bioquímica y biofísica . 426 (2): 163–72. doi :10.1016/j.abb.2004.02.019. PMID 15158667.
^ Cooper GM (2000). "Interacciones célula-célula". La célula: un enfoque molecular (2.ª ed.). Sunderland (MA): Sinauer Associates.
^ Wang B, Boons GJ (9 de septiembre de 2011). Reconocimiento de carbohidratos: problemas biológicos, métodos y aplicaciones. John Wiley & Sons. pág. 66. ISBN9781118017579.
^ Erb IH (mayo de 1940). «Clasificación de grupos sanguíneos: un alegato a favor de la uniformidad». Revista de la Asociación Médica Canadiense . 42 (5): 418–21. PMC 537907 . PMID 20321693.
^ ab Neufeld EF, Hall CW (enero de 1964). "Formación de galactolípidos por cloroplastos". Comunicaciones de investigación bioquímica y biofísica . 14 (6): 503–8. doi :10.1016/0006-291X(64)90259-1. PMID 5836548.
^ Harwood JL, Nicholls RG (abril de 1979). "El sulfolípido vegetal: un componente principal del ciclo del azufre". Biochemical Society Transactions . 7 (2): 440–7. doi :10.1042/bst0070440. PMID 428677.
^ Hakomori S , Igarashi Y (diciembre de 1995). "Función de los glicoesfingolípidos en el reconocimiento y la señalización celular". Journal of Biochemistry . 118 (6): 1091–103. doi : 10.1093/oxfordjournals.jbchem.a124992 . PMID 8720120.
^ Jurevics H, Hostettler J, Muse ED, Sammond DW, Matsushima GK, Toews AD, Morell P (mayo de 2001). "Síntesis de cerebrósidos como medida de la tasa de remielinización tras la desmielinización inducida por cuprizona en el cerebro". Journal of Neurochemistry . 77 (4): 1067–76. doi : 10.1046/j.1471-4159.2001.00310.x . PMID 11359872.
^ Ariga T, McDonald MP, Yu RK (junio de 2008). "El papel del metabolismo de los gangliósidos en la patogénesis de la enfermedad de Alzheimer: una revisión". Journal of Lipid Research . 49 (6): 1157–75. doi : 10.1194/jlr.R800007-JLR200 . PMC 2386904 . PMID 18334715.
^ Paulick MG, Bertozzi CR (julio de 2008). "El ancla de glicosilfosfatidilinositol: una estructura compleja de anclaje a la membrana para proteínas". Bioquímica . 47 (27): 6991–7000. doi :10.1021/bi8006324. PMC 2663890 . PMID 18557633.