En matemáticas , el término esencialmente único se utiliza para describir una forma más débil de unicidad, en la que un objeto que satisface una propiedad es "único" solo en el sentido de que todos los objetos que satisfacen la propiedad son equivalentes entre sí. La noción de unicidad esencial presupone alguna forma de "igualdad", que a menudo se formaliza mediante una relación de equivalencia .
Una noción relacionada es una propiedad universal , donde un objeto no solo es esencialmente único, sino único hasta un isomorfismo único [1] (lo que significa que tiene un grupo de automorfismos triviales ). En general, puede haber más de un isomorfismo entre ejemplos de un objeto esencialmente único.
En el nivel más básico, existe un conjunto esencialmente único de cualquier cardinalidad dada , ya sea que uno etiquete los elementos o . En este caso, la no unicidad del isomorfismo (por ejemplo, hacer coincidir 1 con o 1 con ) se refleja en el grupo simétrico .
Por otra parte, hay un conjunto totalmente ordenado esencialmente único de cualquier cardinalidad finita dada que es único hasta un isomorfismo único: si uno escribe y , entonces el único isomorfismo que preserva el orden es el que asigna 1 a , 2 a , y 3 a .
El teorema fundamental de la aritmética establece que la factorización de cualquier entero positivo en números primos es esencialmente única, es decir, única hasta el ordenamiento de los factores primos . [2] [3]
En el contexto de la clasificación de grupos , existe un grupo esencialmente único que contiene exactamente 2 elementos. [3] De manera similar, también existe un grupo esencialmente único que contiene exactamente 3 elementos: el grupo cíclico de orden tres. De hecho, independientemente de cómo se elija escribir los tres elementos y denotar la operación de grupo, se puede demostrar que todos esos grupos son isomorfos entre sí y, por lo tanto, son "iguales".
Por otra parte, no existe un grupo esencialmente único con exactamente 4 elementos, ya que en este caso hay en total dos grupos no isomorfos: el grupo cíclico de orden 4 y el cuatrigrupo de Klein . [4]
Existe una medida esencialmente única que es invariante en la traducción , estrictamente positiva y localmente finita en la línea real . De hecho, cualquier medida de este tipo debe ser un múltiplo constante de la medida de Lebesgue , lo que especifica que la medida del intervalo unitario debe ser 1, antes de determinar la solución de manera única.
Existe una variedad bidimensional, compacta y simplemente conexa , esencialmente única : la 2-esfera . En este caso, es única hasta el homeomorfismo .
En el área de la topología conocida como teoría de nudos , existe un análogo del teorema fundamental de la aritmética: la descomposición de un nudo en una suma de nudos primos es esencialmente única. [5]
Un subgrupo compacto máximo de un grupo de Lie semisimple puede no ser único, pero es único hasta la conjugación .
Un objeto que es el límite o colimitente sobre un diagrama dado es esencialmente único, ya que existe un isomorfismo único con cualquier otro objeto limitante/colimitante. [6]
Dada la tarea de utilizar palabras de 24 bits para almacenar 12 bits de información de tal manera que se puedan detectar errores de 4 bits y se puedan corregir errores de 3 bits, la solución es esencialmente única: el código binario Golay extendido . [7]