stringtranslate.com

Resonancia paramagnética electrónica

La espectroscopia de resonancia paramagnética electrónica ( EPR ) o resonancia de espín electrónico ( ESR ) es un método para estudiar materiales que tienen electrones desapareados . Los conceptos básicos de la EPR son análogos a los de la resonancia magnética nuclear (RMN), pero los espines excitados son los de los electrones en lugar de los núcleos atómicos . La espectroscopia EPR es particularmente útil para estudiar complejos metálicos y radicales orgánicos. La EPR fue observada por primera vez en la Universidad Estatal de Kazán por el físico soviético Yevgeny Zavoisky en 1944, [1] [2] y fue desarrollada independientemente al mismo tiempo por Brebis Bleaney en la Universidad de Oxford .

Configuración típica para registrar espectros EPR. El usuario estaría sentado junto al generador de RF, el imán y los controles de temperatura de la muestra.

Teoría

Origen de una señal EPR

Cada electrón tiene un momento magnético y un número cuántico de espín , con componentes magnéticos o . En presencia de un campo magnético externo con una fuerza , el momento magnético del electrón se alinea antiparalelamente ( ) o paralelamente ( ) al campo, cada alineación tiene una energía específica debido al efecto Zeeman :

dónde

Por lo tanto, la separación entre el estado inferior y el superior corresponde a los electrones libres desapareados. Esta ecuación implica (ya que tanto y como son constantes) que la división de los niveles de energía es directamente proporcional a la intensidad del campo magnético , como se muestra en el diagrama siguiente.

Un electrón desapareado puede cambiar su espín electrónico absorbiendo o emitiendo un fotón de energía de modo que se cumpla la condición de resonancia, . Esto conduce a la ecuación fundamental de la espectroscopia EPR: .

Experimentalmente, esta ecuación permite una gran combinación de valores de frecuencia y campo magnético, pero la gran mayoría de las mediciones de EPR se realizan con microondas en la región de 9000-10000 MHz (9-10 GHz), con campos correspondientes a aproximadamente 3500 G (0,35 T ). Además, los espectros de EPR se pueden generar variando la frecuencia del fotón incidente en una muestra mientras se mantiene constante el campo magnético o haciendo lo contrario. En la práctica, normalmente es la frecuencia la que se mantiene fija. Una colección de centros paramagnéticos , como los radicales libres, se expone a microondas a una frecuencia fija. Al aumentar un campo magnético externo, la brecha entre los estados de energía y se amplía hasta que coincide con la energía de las microondas, como se representa mediante la doble flecha en el diagrama anterior. En este punto, los electrones desapareados pueden moverse entre sus dos estados de espín. Dado que normalmente hay más electrones en el estado inferior, debido a la distribución de Maxwell-Boltzmann (ver más abajo), hay una absorción neta de energía, y es esta absorción la que se monitorea y se convierte en un espectro. El espectro superior que se muestra a continuación es la absorción simulada para un sistema de electrones libres en un campo magnético variable. El espectro inferior es la primera derivada del espectro de absorción. Esta última es la forma más común de registrar y publicar espectros EPR de onda continua.

Para la frecuencia de microondas de 9388,4 MHz, la resonancia prevista se produce en un campo magnético de aproximadamente = 0,3350 T = 3350 G

Debido a las diferencias de masa entre los electrones y los núcleos, el momento magnético de un electrón es sustancialmente mayor que la cantidad correspondiente para cualquier núcleo, de modo que se necesita una frecuencia electromagnética mucho más alta para generar una resonancia de espín con un electrón que con un núcleo, a intensidades de campo magnético idénticas. Por ejemplo, para el campo de 3350 G que se muestra arriba, la resonancia de espín ocurre cerca de los 9388,2 MHz para un electrón, en comparación con solo unos 14,3 MHz para los núcleos de 1 H. (Para la espectroscopia de RMN, la ecuación de resonancia correspondiente es donde y dependen del núcleo en estudio).

Modulación de campo

El campo oscila entre B 1 y B 2 debido al campo de modulación superpuesto a 100 kHz. Esto hace que la intensidad de absorción oscile entre I 1 e I 2 . Cuanto mayor sea la diferencia, mayor será la intensidad detectada por el detector sintonizado a 100 kHz (tenga en cuenta que puede ser negativa o incluso cero). A medida que se detecta la diferencia entre las dos intensidades, se detecta la primera derivada de la absorción.

Como se mencionó anteriormente, un espectro EPR generalmente se mide directamente como la primera derivada de la absorción. Esto se logra mediante el uso de modulación de campo. Se aplica un pequeño campo magnético oscilante adicional al campo magnético externo a una frecuencia típica de 100 kHz. [4] Al detectar la amplitud pico a pico, se mide la primera derivada de la absorción. Al utilizar la detección sensible a la fase, solo se detectan señales con la misma modulación (100 kHz). Esto da como resultado relaciones señal/ruido más altas. Tenga en cuenta que la modulación de campo es exclusiva de las mediciones EPR de onda continua y los espectros resultantes de experimentos pulsados ​​se presentan como perfiles de absorción.

La misma idea subyace a la técnica Pound-Drever-Hall para el bloqueo de frecuencia de los láseres en una cavidad óptica de alta finura.

Distribución de Maxwell-Boltzmann

En la práctica, las muestras de EPR consisten en conjuntos de muchas especies paramagnéticas y no en centros paramagnéticos aislados. Si la población de radicales está en equilibrio termodinámico, su distribución estadística se describe mediante la distribución de Boltzmann :

donde es el número de centros paramagnéticos que ocupan el estado de energía superior, es la constante de Boltzmann y es la temperatura termodinámica . A 298 K, las frecuencias de microondas de banda X ( ≈ 9,75 GHz) dan ≈ 0,998, lo que significa que el nivel de energía superior tiene una población ligeramente menor que el inferior. Por lo tanto, las transiciones del nivel inferior al superior son más probables que a la inversa, por lo que hay una absorción neta de energía.

La sensibilidad del método EPR (es decir, el número mínimo de espines detectables ) depende de la frecuencia del fotón según

donde es una constante, es el volumen de la muestra, es el factor de calidad sin carga de la cavidad de microondas (cámara de muestra), es el coeficiente de llenado de la cavidad y es la potencia de microondas en la cavidad del espectrómetro. Con y siendo constantes, ~ , es decir, ~ , donde ≈ 1,5. En la práctica, puede variar de 0,5 a 4,5 dependiendo de las características del espectrómetro, las condiciones de resonancia y el tamaño de la muestra.

Se obtiene así una gran sensibilidad con un límite de detección bajo y un gran número de espines. Por tanto, los parámetros requeridos son:

Parámetros espectrales

En los sistemas reales, los electrones normalmente no están solos, sino que están asociados a uno o más átomos. Esto tiene varias consecuencias importantes:

  1. Un electrón desapareado puede ganar o perder momento angular, lo que puede cambiar el valor de su factor g y hacer que sea diferente de . Esto es especialmente significativo para los sistemas químicos con iones de metales de transición.
  2. Los sistemas con múltiples electrones desapareados experimentan interacciones electrón-electrón que dan lugar a una estructura "fina". Esto se materializa como división de campo cero y acoplamiento de intercambio , y puede ser de gran magnitud.
  3. El momento magnético de un núcleo con un espín nuclear distinto de cero afectará a cualquier electrón desapareado asociado con ese átomo. Esto conduce al fenómeno del acoplamiento hiperfino , análogo al acoplamiento J en RMN, que divide la señal de resonancia EPR en dobletes, tripletes, etc. Las divisiones más pequeñas adicionales de los núcleos cercanos a veces se denominan acoplamiento "superhiperfino".
  4. Las interacciones de un electrón desapareado con su entorno influyen en la forma de una línea espectral EPR. Las formas de las líneas pueden brindar información sobre, por ejemplo, las velocidades de las reacciones químicas. [5]
  5. Estos efectos ( factor g , acoplamiento hiperfino, división de campo cero, acoplamiento de intercambio) en un átomo o molécula pueden no ser los mismos para todas las orientaciones de un electrón desapareado en un campo magnético externo. Esta anisotropía depende de la estructura electrónica del átomo o molécula (por ejemplo, radical libre) en cuestión, y por lo tanto puede proporcionar información sobre el orbital atómico o molecular que contiene el electrón desapareado.

Elgramofactor

El conocimiento del factor g puede proporcionar información sobre la estructura electrónica de un centro paramagnético. Un electrón desapareado responde no sólo al campo magnético aplicado por un espectrómetro , sino también a cualquier campo magnético local de átomos o moléculas. El campo efectivo que experimenta un electrón se escribe así:

donde incluye los efectos de los campos locales ( pueden ser positivos o negativos). Por lo tanto, la condición de resonancia (anterior) se reescribe de la siguiente manera:

La cantidad se denota y se llama simplemente factor g , de modo que la ecuación de resonancia final se convierte en

Esta última ecuación se utiliza para determinar en un experimento EPR midiendo el campo y la frecuencia a la que se produce la resonancia. Si no es igual a , la implicación es que la relación entre el momento magnético de espín del electrón desapareado y su momento angular difiere del valor del electrón libre. Dado que el momento magnético de espín de un electrón es constante (aproximadamente el magnetón de Bohr), entonces el electrón debe haber ganado o perdido momento angular a través del acoplamiento espín-órbita . Debido a que los mecanismos de acoplamiento espín-órbita se entienden bien, la magnitud del cambio proporciona información sobre la naturaleza del orbital atómico o molecular que contiene el electrón desapareado.

La forma de un espectro EPR de patrón de polvo cambia según la distribución de los valores principales de la matriz.

En general, el factor g no es un número sino una matriz 3×3 . Los ejes principales de este tensor están determinados por los campos locales, por ejemplo, por la disposición atómica local alrededor del espín no apareado en un sólido o en una molécula. La elección de un sistema de coordenadas apropiado (por ejemplo, x , y , z ) permite "diagonalizar" este tensor, reduciendo así el número máximo de sus componentes de 9 a 3: g xx , g yy y g zz . Para un solo espín que experimenta solo interacción Zeeman con un campo magnético externo, la posición de la resonancia EPR está dada por la expresión g xx B x + g yy B y + g zz B z . Aquí B x , B y y B z son los componentes del vector de campo magnético en el sistema de coordenadas ( x , y , z ); sus magnitudes cambian a medida que se gira el campo, al igual que la frecuencia de la resonancia. Para un gran conjunto de espines orientados aleatoriamente (como en una solución fluida), el espectro EPR consta de tres picos de forma característica en las frecuencias g xx B 0 , g yy B 0 y g zz B 0 .

En el espectro de primera derivada, el pico de baja frecuencia es positivo, el pico de alta frecuencia es negativo y el pico central es bipolar. Estas situaciones se observan comúnmente en polvos y, por lo tanto, los espectros se denominan "espectros de patrón de polvo". En los cristales, el número de líneas EPR está determinado por el número de orientaciones cristalográficamente equivalentes del espín EPR (denominado "centro EPR").

A temperaturas más altas, los tres picos se fusionan para formar un singlete, que corresponde a g iso , para isotrópico. La relación entre g iso y los componentes es:

Un paso elemental en el análisis de un espectro EPR es comparar g iso con el factor g para el electrón libre, g e . Los radicales basados ​​en metales g iso están típicamente muy por encima de g e , mientras que los radicales orgánicos, g iso ~ g e .

La determinación del valor absoluto del factor g es un desafío debido a la falta de una estimación precisa del campo magnético local en la ubicación de la muestra. Por lo tanto, los llamados estándares de factor g se miden típicamente junto con la muestra de interés. En el espectro común, la línea espectral del estándar de factor g se utiliza como punto de referencia para determinar el factor g de la muestra. Para la calibración inicial de los estándares de factor g , Herb et al. introdujeron un procedimiento preciso mediante el uso de técnicas de doble resonancia basadas en el desplazamiento de Overhauser. [6]

Acoplamiento hiperfino

Dado que la fuente de un espectro EPR es un cambio en el estado de espín de un electrón, el espectro EPR para un radical (sistema S = 1/2) constaría de una línea. La mayor complejidad surge porque el espín se acopla con los espines nucleares cercanos. La magnitud del acoplamiento es proporcional al momento magnético de los núcleos acoplados y depende del mecanismo de acoplamiento. El acoplamiento está mediado por dos procesos, dipolar (a través del espacio) e isotrópico (a través del enlace).

Este acoplamiento introduce estados de energía adicionales y, a su vez, espectros de líneas múltiples. En tales casos, el espaciamiento entre las líneas espectrales EPR indica el grado de interacción entre el electrón desapareado y los núcleos perturbadores. La constante de acoplamiento hiperfina de un núcleo está directamente relacionada con el espaciamiento de las líneas espectrales y, en los casos más simples, es esencialmente el espaciamiento en sí. [7]

Dos mecanismos comunes por los cuales los electrones y los núcleos interactúan son la interacción de contacto de Fermi y la interacción dipolar. La primera se aplica en gran medida al caso de interacciones isotrópicas (independientes de la orientación de la muestra en un campo magnético) y la segunda al caso de interacciones anisotrópicas (espectros dependientes de la orientación de la muestra en un campo magnético). La polarización de espín es un tercer mecanismo para las interacciones entre un electrón desapareado y un espín nuclear, siendo especialmente importante para los radicales orgánicos de electrones α, como el anión radical benceno. Los símbolos " a " o " A " se utilizan para constantes de acoplamiento hiperfino isotrópico, mientras que " B " se emplea generalmente para constantes de acoplamiento hiperfino anisotrópico. [8]

En muchos casos, se puede predecir el patrón de división hiperfina isotrópica de un radical que gira libremente en una solución (sistema isotrópico).

Multiplicidad

Espectros EPR simulados de los radicales metilo y metoximetilo

Si bien es fácil predecir la cantidad de líneas, el problema inverso, es decir, desentrañar un espectro EPR complejo de múltiples líneas y asignar los distintos espaciamientos a núcleos específicos, es más difícil.

En el caso frecuente de núcleos I  = 1/2 (p. ej., 1 H, 19 F, 31 P), las intensidades de línea producidas por una población de radicales, cada uno de los cuales posee M núcleos equivalentes, seguirán el triángulo de Pascal . Por ejemplo, el espectro de la derecha muestra que los tres núcleos 1 H del radical CH 3 dan lugar a 2 MI  + 1 = 2(3)(1/2) + 1 = 4 líneas con una relación 1:3:3:1. El espaciado de línea da una constante de acoplamiento hiperfina de un H = 23 G para cada uno de los tres núcleos 1 H. Nótese nuevamente que las líneas en este espectro son primeras derivadas de absorciones.

Como segundo ejemplo, el radical metoximetilo, H 3 COCH 2 . el centro OC H 2 dará un patrón EPR general 1:2:1, cada componente del cual se divide aún más por los tres hidrógenos metoxi en un patrón 1:3:3:1 para dar un total de 3 × 4 = 12 líneas, un triplete de cuartetos. Se muestra una simulación del espectro EPR observado y concuerda con la predicción de 12 líneas y las intensidades de línea esperadas. Tenga en cuenta que la constante de acoplamiento más pequeña (espaciado de línea más pequeño) se debe a los tres hidrógenos metoxi, mientras que la constante de acoplamiento más grande (espaciado de línea) proviene de los dos hidrógenos unidos directamente al átomo de carbono que lleva el electrón desapareado. A menudo ocurre que las constantes de acoplamiento disminuyen de tamaño con la distancia desde el electrón desapareado de un radical, pero hay algunas excepciones notables, como el radical etilo (CH 2 CH 3 ).

Definición de ancho de línea de resonancia

Los anchos de línea de resonancia se definen en términos de la inducción magnética B y sus unidades correspondientes, y se miden a lo largo del eje x de un espectro EPR, desde el centro de una línea hasta un punto de referencia elegido de la línea. Estos anchos definidos se denominan medios anchos y poseen algunas ventajas: para líneas asimétricas, se pueden dar valores de medio ancho izquierdo y derecho. El medio ancho es la distancia medida desde el centro de la línea hasta el punto en el que el valor de absorción tiene la mitad del valor de absorción máxima en el centro de la línea de resonancia . El primer ancho de inclinación es una distancia desde el centro de la línea hasta el punto de inclinación máxima de la curva de absorción. En la práctica, se utiliza una definición completa de ancho de línea. Para líneas simétricas, medio ancho y ancho de inclinación completo .

Aplicaciones

Este STM ESR de baja temperatura en el Centro de Nanociencia Cuántica es uno de los primeros STM a nivel mundial que mide la resonancia de espín electrónico en átomos individuales.

La espectroscopia EPR/ESR se utiliza en diversas ramas de la ciencia, como la biología , la química y la física , para la detección e identificación de radicales libres en estado sólido, líquido o gaseoso, [9] y en centros paramagnéticos como los centros F.

Reacciones químicas

La EPR es un método sensible y específico para estudiar tanto los radicales formados en las reacciones químicas como las reacciones mismas. Por ejemplo, cuando el hielo (H2O sólido ) se descompone por exposición a radiación de alta energía, se producen radicales como H, OH y HO2 . Estos radicales se pueden identificar y estudiar mediante EPR. Los radicales orgánicos e inorgánicos se pueden detectar en sistemas electroquímicos y en materiales expuestos a la luz ultravioleta . En muchos casos, las reacciones para formar los radicales y las reacciones posteriores de los radicales son de interés, mientras que en otros casos la EPR se utiliza para proporcionar información sobre la geometría de un radical y el orbital del electrón desapareado.

La EPR es útil en la investigación de catálisis homogénea para la caracterización de complejos paramagnéticos e intermedios reactivos . [10] La espectroscopia EPR es una herramienta particularmente útil para investigar sus estructuras electrónicas , lo cual es fundamental para comprender su reactividad .

La espectroscopia EPR/ESR se puede aplicar únicamente a sistemas en los que el equilibrio entre la desintegración y la formación de radicales mantiene la concentración de radicales libres por encima del límite de detección del espectrómetro utilizado. Esto puede ser un problema especialmente grave en el estudio de reacciones en líquidos. Un enfoque alternativo es ralentizar las reacciones mediante el estudio de muestras mantenidas a temperaturas criogénicas , como 77 K ( nitrógeno líquido ) o 4,2 K ( helio líquido ). Un ejemplo de este trabajo es el estudio de reacciones radicalarias en monocristales de aminoácidos expuestos a rayos X, trabajo que a veces conduce a energías de activación y constantes de velocidad para reacciones radicalarias.

Médica y biológica

También existen aplicaciones médicas y biológicas de la EPR. Aunque los radicales son muy reactivos, por lo que normalmente no se encuentran en altas concentraciones en biología, se han desarrollado reactivos especiales para unir " etiquetas de espín ", también llamadas "sondas de espín", a las moléculas de interés. Las moléculas radicales no reactivas especialmente diseñadas pueden unirse a sitios específicos en una célula biológica , y los espectros de EPR luego brindan información sobre el entorno de las etiquetas de espín. Los ácidos grasos marcados con espín se han utilizado ampliamente para estudiar la organización dinámica de los lípidos en las membranas biológicas, [11] las interacciones lípido-proteína [12] y la temperatura de transición de las fases de gel a cristalino líquido. [13] La inyección de moléculas marcadas con espín permite la obtención de imágenes por resonancia electrónica de organismos vivos.

Se ha diseñado un tipo de sistema de dosimetría para patrones de referencia y uso rutinario en medicina, basado en señales EPR de radicales de α- alanina policristalina irradiada (el radical de desaminación de la alanina, el radical de abstracción de hidrógeno y el radical (CO (OH))=C(CH 3 )NH+2Este método es adecuado para medir rayos gamma y X , electrones, protones y radiación de transferencia de energía lineal (LET) de dosis en el rango de 1 Gy a 100 kGy. [14]

La EPR se puede utilizar para medir la microviscosidad y la micropolaridad dentro de los sistemas de administración de fármacos, así como para la caracterización de portadores de fármacos coloidales. [15]

El estudio de los radicales libres inducidos por radiación en sustancias biológicas (para la investigación del cáncer) plantea el problema adicional de que el tejido contiene agua, y el agua (debido a su momento dipolar eléctrico ) tiene una fuerte banda de absorción en la región de microondas utilizada en los espectrómetros EPR. [ cita requerida ]

Caracterización de materiales

La espectroscopia EPR/ESR se utiliza en geología y arqueología como herramienta de datación . Se puede aplicar a una amplia gama de materiales, como pizarras orgánicas, carbonatos, sulfatos, fosfatos, sílice u otros silicatos. [16] Cuando se aplica a las pizarras, los datos de EPR se correlacionan con la madurez del kerógeno en la pizarra. [17]

La espectroscopia EPR se ha utilizado para medir propiedades del petróleo crudo , como la determinación del contenido de asfalteno y vanadio . [18] El componente de radicales libres de la señal EPR es proporcional a la cantidad de asfalteno en el petróleo independientemente de los solventes o precipitantes que puedan estar presentes en ese petróleo. [19] Sin embargo, cuando el petróleo se somete a un precipitante como hexano , heptano , piridina , entonces gran parte del asfalteno se puede extraer posteriormente del petróleo mediante técnicas gravimétricas. La medición EPR de ese extracto será entonces función de la polaridad del precipitante que se utilizó. [20] En consecuencia, es preferible aplicar la medición EPR directamente al crudo. En el caso de que la medición se realice aguas arriba de un separador (producción de petróleo) , entonces también puede ser necesario determinar la fracción de petróleo dentro del crudo (por ejemplo, si un determinado crudo contiene 80% de petróleo y 20% de agua, entonces la firma EPR será el 80% de la firma de aguas abajo del separador).

Los arqueólogos han utilizado la EPR para datar los dientes. El daño por radiación durante largos períodos de tiempo crea radicales libres en el esmalte dental, que luego se pueden examinar mediante EPR y, después de una calibración adecuada, datar. De manera similar, el material extraído de los dientes de las personas durante los procedimientos dentales se puede utilizar para cuantificar su exposición acumulada a la radiación ionizante. Las personas (y otros mamíferos [21] ) expuestas a la radiación de las bombas atómicas, [22] del desastre de Chernóbil , [23] [24] y del accidente de Fukushima han sido examinadas mediante este método. [25]

Se han examinado alimentos esterilizados por radiación con espectroscopia EPR, con el objetivo de desarrollar métodos para determinar si una muestra de alimento ha sido irradiada y a qué dosis. [26]

Otras aplicaciones

En el campo de la computación cuántica , la EPR pulsada se utiliza para controlar el estado de los qubits de espín de electrones en materiales como el diamante, el silicio y el arseniuro de galio. [ cita requerida ]

Mediciones de alta frecuencia y campo alto

A veces se necesitan mediciones EPR de alta frecuencia y alto campo para detectar detalles espectroscópicos sutiles. Sin embargo, durante muchos años el uso de electroimanes para producir los campos necesarios por encima de 1,5 T fue imposible, debido principalmente a las limitaciones de los materiales magnéticos tradicionales. El primer espectrómetro EPR milimétrico multifuncional con un solenoide superconductor fue descrito a principios de la década de 1970 por el grupo del profesor YS Lebedev ( Instituto Ruso de Física Química , Moscú) en colaboración con el grupo de LG Oranski (Instituto Ucraniano de Física y Técnica, Donetsk), que comenzó a trabajar en el Instituto de Problemas de Física Química , Chernogolovka alrededor de 1975. [27] Dos décadas después, la empresa alemana Bruker produjo un espectrómetro EPR de banda W como una pequeña línea comercial , iniciando la expansión de las técnicas EPR de banda W en laboratorios académicos de tamaño mediano.

Variación del espectro EPR del radical nitróxido TEMPO a medida que cambia la banda de microondas (energía de excitación). [27] Nótese la resolución mejorada a medida que aumenta la frecuencia (sin tener en cuenta la influencia de la deformación g ).

La banda de onda EPR está estipulada por la frecuencia o longitud de onda de la fuente de microondas de un espectrómetro (ver Tabla).

Los experimentos de EPR se realizan a menudo en las bandas X y, con menos frecuencia, en las Q, principalmente debido a la fácil disponibilidad de los componentes de microondas necesarios (que originalmente se desarrollaron para aplicaciones de radar ). Una segunda razón para las mediciones generalizadas en las bandas X y Q es que los electroimanes pueden generar de manera confiable campos de hasta aproximadamente 1 tesla. Sin embargo, la baja resolución espectral sobre el factor g en estas bandas de ondas limita el estudio de centros paramagnéticos con parámetros magnéticos anisotrópicos comparativamente bajos. Las mediciones a > 40 GHz, en la región de longitud de onda milimétrica, ofrecen las siguientes ventajas:

  1. Los espectros EPR se simplifican debido a la reducción de los efectos de segundo orden en campos altos.
  2. Aumento de la selectividad y sensibilidad de la orientación en la investigación de sistemas desordenados.
  3. La informatividad y precisión de los métodos de pulso , por ejemplo ENDOR, también aumentan en campos magnéticos elevados.
  4. Accesibilidad de sistemas de espín con mayor división de campo cero debido a la mayor energía cuántica de microondas h .
  5. La resolución espectral más alta sobre el factor g , que aumenta con la frecuencia de irradiación y el campo magnético externo B 0 . Esto se utiliza para investigar la estructura, polaridad y dinámica de microambientes radicales en sistemas orgánicos y biológicos modificados por espín a través del método de sonda y etiqueta de espín . La figura muestra cómo la resolución espectral mejora con el aumento de la frecuencia.
  6. La saturación de los centros paramagnéticos se produce en un campo de polarización de microondas B 1 comparativamente bajo , debido a la dependencia exponencial del número de espines excitados con respecto a la frecuencia de radiación . Este efecto se puede utilizar con éxito para estudiar la relajación y la dinámica de los centros paramagnéticos, así como el movimiento superlento en los sistemas en estudio.
  7. La relajación cruzada de los centros paramagnéticos disminuye drásticamente en campos magnéticos altos, lo que hace más fácil obtener información más precisa y completa sobre el sistema en estudio. [27]

Esto se demostró experimentalmente en el estudio de varios sistemas biológicos, poliméricos y modelo en EPR de banda D. [28]

Componentes de hardware

Modelo 3D de un espectrómetro CW-EPR de banda X típico

Puente de microondas

El puente de microondas contiene tanto la fuente de microondas como el detector. [29] Los espectrómetros más antiguos utilizaban un tubo de vacío llamado klistrón para generar microondas, pero los espectrómetros modernos utilizan un diodo Gunn . Inmediatamente después de la fuente de microondas hay un aislador que sirve para atenuar cualquier reflexión de vuelta a la fuente que daría lugar a fluctuaciones en la frecuencia de microondas. [4] La energía de microondas de la fuente pasa entonces a través de un acoplador direccional que divide la energía de microondas en dos caminos, uno dirigido hacia la cavidad y el otro hacia el brazo de referencia. A lo largo de ambos caminos hay un atenuador variable que facilita el control preciso del flujo de energía de microondas. Esto a su vez permite un control preciso sobre la intensidad de las microondas sometidas a la muestra. En el brazo de referencia, después del atenuador variable hay un desfasador que establece una relación de fase definida entre la señal de referencia y la reflejada que permite una detección sensible a la fase.

La mayoría de los espectrómetros EPR son espectrómetros de reflexión, lo que significa que el detector solo debe exponerse a la radiación de microondas que regresa de la cavidad. Esto se logra mediante el uso de un dispositivo conocido como circulador que dirige la radiación de microondas (desde la rama que se dirige hacia la cavidad) hacia la cavidad. La radiación de microondas reflejada (después de la absorción por la muestra) pasa luego a través del circulador hacia el detector, lo que garantiza que no regrese a la fuente de microondas. La señal de referencia y la señal reflejada se combinan y pasan al diodo detector que convierte la potencia de microondas en una corriente eléctrica.

Brazo de referencia

A bajas energías (menos de 1 μW), la corriente del diodo es proporcional a la potencia de microondas y el detector se denomina detector de ley cuadrática . A niveles de potencia más altos (superiores a 1 mW), la corriente del diodo es proporcional a la raíz cuadrada de la potencia de microondas y el detector se denomina detector lineal. Para obtener una sensibilidad óptima, así como información cuantitativa, el diodo debe funcionar dentro de la región lineal. Para garantizar que el detector funcione a ese nivel, el brazo de referencia sirve para proporcionar un "sesgo".

Imán

En un espectrómetro EPR, el conjunto magnético incluye el imán con una fuente de alimentación dedicada, así como un sensor de campo o regulador, como una sonda Hall . Los espectrómetros EPR utilizan uno de dos tipos de imán, que se determina por la frecuencia de microondas de funcionamiento (que determina el rango de intensidades de campo magnético requerido). El primero es un electroimán que generalmente es capaz de generar intensidades de campo de hasta 1,5 T, lo que los hace adecuados para mediciones que utilizan la frecuencia de banda Q. Para generar intensidades de campo apropiadas para la banda W y el funcionamiento a frecuencias más altas, se emplean imanes superconductores. El campo magnético es homogéneo en todo el volumen de la muestra y tiene una alta estabilidad en el campo estático.

Resonador de microondas (cavidad)

El resonador de microondas está diseñado para mejorar el campo magnético de microondas en la muestra con el fin de inducir transiciones EPR. Es una caja de metal con forma rectangular o cilíndrica que resuena con microondas (como un tubo de órgano con ondas sonoras). A la frecuencia de resonancia de la cavidad, las microondas permanecen dentro de la cavidad y no se reflejan de vuelta. La resonancia significa que la cavidad almacena energía de microondas y su capacidad para hacer esto está dada por el factor de calidad Q , definido por la siguiente ecuación:

Cuanto mayor sea el valor de Q , mayor será la sensibilidad del espectrómetro. La energía disipada es la energía perdida en un período de microondas. La energía puede perderse en las paredes laterales de la cavidad, ya que las microondas pueden generar corrientes que, a su vez, generan calor. Una consecuencia de la resonancia es la creación de una onda estacionaria dentro de la cavidad. Las ondas estacionarias electromagnéticas tienen sus componentes de campo eléctrico y magnético exactamente desfasados. Esto proporciona una ventaja, ya que el campo eléctrico proporciona una absorción no resonante de las microondas, lo que a su vez aumenta la energía disipada y reduce Q. Para lograr las señales más grandes y, por lo tanto, la sensibilidad, la muestra se coloca de tal manera que se encuentre dentro del máximo del campo magnético y el mínimo del campo eléctrico. Cuando la intensidad del campo magnético es tal que se produce un evento de absorción, el valor de Q se reducirá debido a la pérdida de energía adicional. Esto da como resultado un cambio de impedancia que sirve para evitar que la cavidad se acople críticamente. Esto significa que las microondas ahora se reflejarán de vuelta al detector (en el puente de microondas) donde se detecta una señal EPR. [30]

Resonancia paramagnética de electrones pulsados

La dinámica de los espines de los electrones se estudia mejor con mediciones pulsadas. [31] Los pulsos de microondas, que suelen tener una duración de entre 10 y 100 ns, se utilizan para controlar los espines en la esfera de Bloch . El tiempo de relajación de espín-red se puede medir con un experimento de recuperación de inversión .

Al igual que con la RMN pulsada , el eco de Hahn es fundamental para muchos experimentos de EPR pulsada. Se puede utilizar un experimento de decaimiento del eco de Hahn para medir el tiempo de desfase, como se muestra en la animación a continuación. El tamaño del eco se registra para diferentes espaciamientos de los dos pulsos. Esto revela la decoherencia, que no se reenfoca con el pulso. En casos simples, se mide un decaimiento exponencial , que se describe mediante el tiempo.

La resonancia paramagnética de electrones pulsados ​​podría convertirse en espectroscopia de resonancia nuclear doble de electrones (ENDOR), que utiliza ondas en frecuencias de radio. Dado que los diferentes núcleos con electrones desapareados responden a diferentes longitudes de onda, a veces se requieren frecuencias de radio. Dado que los resultados de la ENDOR proporcionan la resonancia de acoplamiento entre los núcleos y el electrón desapareado, se puede determinar la relación entre ellos.

Véase también

Referencias

  1. ^ Zavoisky E (1945). "Resonancia magnética de espín en paramagnética". J. Phys. (URSS) . 9 : 245.
  2. ^ Zavoisky E (1944). Absorción paramagnética en campos perpendiculares y paralelos para sales, soluciones y metales (tesis doctoral).
  3. ^ Odom B, Hanneke D, D'Urso B, Gabrielse G (julio de 2006). "Nueva medición del momento magnético del electrón utilizando un ciclotrón cuántico de un electrón". Physical Review Letters . 97 (3): 030801. Bibcode :2006PhRvL..97c0801O. doi :10.1103/PhysRevLett.97.030801. PMID  16907490.
  4. ^ ab Chechik V, Carter E, Murphy D (2016). Resonancia paramagnética electrónica . Oxford, Reino Unido: Oxford University Press. ISBN 978-0-19-872760-6.OCLC 945390515  .
  5. ^ Levine IN (1975). Espectroscopia molecular . Wiley & Sons, Inc., pág. 380. ISBN 978-0-471-53128-9.
  6. ^ Herb K, Tschaggelar R, Denninger G, Jeschke G (abril de 2018). "Calibración por resonancia doble de patrones de factor g: fibras de carbono como patrón de alta precisión". Journal of Magnetic Resonance . 289 : 100–106. Bibcode :2018JMagR.289..100H. doi : 10.1016/j.jmr.2018.02.006 . hdl : 20.500.11850/245192 . PMID  29476927.
  7. ^ Enciclopedia de espectroscopia y espectrometría . Academic Press. 2016. pp. 521, 528. ISBN 9780128032251.
  8. ^ Estrictamente hablando, " a " se refiere a la constante de desdoblamiento hiperfino, un espaciado de línea medido en unidades de campo magnético, mientras que A y B se refieren a constantes de acoplamiento hiperfino medidas en unidades de frecuencia. Las constantes de desdoblamiento y acoplamiento son proporcionales, pero no idénticas. El libro de Wertz y Bolton tiene más información (pp. 46 y 442). Wertz JE, Bolton JR (1972). Resonancia de espín electrónico: teoría elemental y aplicaciones prácticas . Nueva York: McGraw-Hill.
  9. ^ Wertz, John y James R Bolton. Resonancia de espín electrónico: teoría elemental y aplicación práctica. Chapman y Hall, 1986.
  10. ^ Goswami, Monalisa; Chirila, Andrei; Rebreyend, Christophe; de ​​Bruin, Bas (1 de septiembre de 2015). "Espectroscopia EPR como herramienta en la investigación de catálisis homogénea". Temas de catálisis . 58 (12): 719–750. doi : 10.1007/s11244-015-0414-9 . ISSN  1572-9028.
  11. ^ Yashroy RC (1990). "Estudios de resonancia magnética de la organización dinámica de los lípidos en las membranas de los cloroplastos". Journal of Biosciences . 15 (4): 281–288. doi :10.1007/BF02702669. S2CID  360223.
  12. ^ YashRoy RC (enero de 1991). "Desnaturalización térmica de proteínas y estudio de las interacciones proteína-lípido de membrana mediante ESR de etiqueta de espín". Journal of Biochemical and Biophysical Methods . 22 (1): 55–9. doi :10.1016/0165-022X(91)90081-7. PMID  1848569.
  13. ^ YashRoy RC (1990). "Determinación de la temperatura de transición de fase de lípidos de membrana a partir de intensidades de RMN de 13C". Revista de métodos bioquímicos y biofísicos . 20 (4): 353–6. doi :10.1016/0165-022X(90)90097-V. PMID  2365951.
  14. ^ Chu RD, McLaughlin WL, Miller A, Sharpe PH (diciembre de 2008). "5. Sistemas de dosimetría". Revista de la ICRU . 8 (2): 29–70. doi :10.1093/jicru/ndn027. PMID  24174520.
  15. ^ Kempe S, Metz H, Mader K (enero de 2010). "Aplicación de la espectroscopia y la obtención de imágenes por resonancia paramagnética electrónica (EPR) en la investigación sobre administración de fármacos: posibilidades y desafíos". Revista Europea de Farmacia y Biofarmacia . 74 (1): 55–66. doi :10.1016/j.ejpb.2009.08.007. PMID  19723580.
  16. ^ Ikeya M (1993). Nuevas aplicaciones de la resonancia de espín electrónico . doi :10.1142/1854. ISBN 978-981-02-1199-8.
  17. ^ Bakr MY, Akiyama M, Sanada Y (1990). "Evaluación ESR de la maduración del kerógeno y su relación con la génesis del petróleo". Geoquímica orgánica . 15 (6): 595–599. Bibcode :1990OrGeo..15..595B. doi :10.1016/0146-6380(90)90104-8.
  18. ^ Yen, TF; Erdman, JG; Saraceno, AJ (1962). "Investigación de la naturaleza de los radicales libres en asfaltenos de petróleo y sustancias relacionadas mediante resonancia de espín electrónico". Química analítica . 34 (6): 694–700. doi :10.1021/ac60186a034.
  19. ^ Lovell J, Abdullah D, Punnapala S, Al Daghar K, Kulbrandstad O, Madem S, Meza D (noviembre de 2020). "Un sistema de IoT químico para asegurar el flujo: desde aplicaciones de un solo pozo hasta la implementación en campo". SPE-203286-MS . ADIPEC. doi :10.2118/203286-MS.
  20. ^ Khulbe K, Mann R, Lu B, Lamarche G, Lamarche A (1992). "Efectos de los disolventes sobre los radicales libres del betún y los asfaltenos". Tecnología de procesamiento de combustibles . 32 (3): 133–141. doi :10.1016/0378-3820(92)90027-N.
  21. ^ Azumi Todaka; Shin Toyoda; Masahiro Natsuhori; Keiji Okada; Itaru Sato; Hiroshi Sato; Jun Sasaki (agosto de 2020). "Evaluación de la ESR de la dosis de esmalte dental del ganado criado en áreas contaminadas debido al accidente de la planta de energía nuclear de Fukushima Dai-ichi". Mediciones de radiación . 136 (106357): 106357. Bibcode :2020RadM..136j6357T. doi :10.1016/j.radmeas.2020.106357. S2CID  218993842.
  22. ^ Nori Nakamura; Yuko Hirai; Yoshiaki Kodama (2012). "Dosimetría de rayos gamma y neutrones por EPR y AMS, utilizando esmalte dental de sobrevivientes de la bomba atómica: una mini revisión". Dosimetría de protección radiológica . 149 (1): 79–83. doi : 10.1093/rpd/ncr478 . PMID  22267275.
  23. ^ Gualtieri G, Colacicchi S, Sgattoni R, Giannoni M (julio de 2001). "El accidente de Chernóbil: dosimetría EPR en el esmalte dental de niños". Applied Radiation and Isotopes . 55 (1): 71–9. doi :10.1016/S0969-8043(00)00351-1. PMID  11339534.
  24. ^ Chumak V, Sholom S, Pasalskaya L (1999). "Aplicación de la dosimetría EPR de alta precisión con dientes para la reconstrucción de dosis a las poblaciones de Chernóbil". Dosimetría de protección radiológica . 84 : 515–520. doi :10.1093/oxfordjournals.rpd.a032790.
  25. ^ S. Toyoda; A. Kondo; K. Zumadilov; M. Hoshi; C. Miyazawa; A. Ivannikov (septiembre de 2011). "Medidas de ESR de dosis de fondo en dientes de residentes japoneses". Mediciones de radiación . 46 (9): 797–800. Bibcode :2011RadM...46..797T. doi :10.1016/j.radmeas.2011.05.008.
  26. ^ Chauhan, SK; et al. (2008). "Métodos de detección para alimentos irradiados". Revisiones exhaustivas sobre ciencia y seguridad alimentaria . 8 : 4. doi : 10.1111/j.1541-4337.2008.00063.x .
  27. ^ abc EPR de sistemas de baja dimensión
  28. ^ Krinichnyi VI (1995). Espectroscopia EPR de banda de onda de 2 mm de sistemas condensados . Boca Raton, Florida: CRC Press.
  29. ^ Eaton GR, Eaton SS, Barr DP, Weber RT (10 de abril de 2010). EPR cuantitativo. Springer Science & Business Media. ISBN 978-3-211-92948-3.
  30. ^ Eaton GR, Eaton SS, Barr DP, Weber RT (2010). "Fundamentos de la EPR de onda continua". EPR cuantitativa : 1–14. doi :10.1007/978-3-211-92948-3_1. ISBN 978-3-211-92947-6.
  31. ^ Schweiger A, Jeschke G (2001). Principios de la resonancia paramagnética de electrones de pulso . Prensa de la Universidad de Oxford. ISBN 978-0-19-850634-8.

Enlaces externos