stringtranslate.com

Longitud de onda

La longitud de onda de una onda sinusoidal , λ, se puede medir entre dos puntos cualesquiera con la misma fase , como entre crestas (arriba) o valles (abajo), o los cruces por cero correspondientes , como se muestra.

En física y matemáticas , la longitud de onda o período espacial de una onda o función periódica es la distancia en la que se repite la forma de la onda. [1] [2] En otras palabras, es la distancia entre puntos correspondientes consecutivos de la misma fase en la onda, como dos crestas, valles o cruces por cero adyacentes . La longitud de onda es una característica tanto de las ondas viajeras como de las ondas estacionarias , así como de otros patrones de ondas espaciales. [3] [4] La inversa de la longitud de onda se llama frecuencia espacial . La longitud de onda se designa comúnmente con la letra griega lambda (λ). El término "longitud de onda" también se aplica a veces a ondas moduladas y a las envolturas sinusoidales de ondas moduladas u ondas formadas por interferencia de varias sinusoides. [5]

Suponiendo que una onda sinusoidal se mueve a una velocidad de onda fija, la longitud de onda es inversamente proporcional a la frecuencia de la onda: las ondas con frecuencias más altas tienen longitudes de onda más cortas y las frecuencias más bajas tienen longitudes de onda más largas. [6]

La longitud de onda depende del medio (por ejemplo, vacío, aire o agua) por el que viaja la onda. Ejemplos de ondas son las ondas sonoras , la luz , las ondas del agua y las señales eléctricas periódicas en un conductor . Una onda sonora es una variación de la presión del aire , mientras que en la luz y otras radiaciones electromagnéticas la fuerza del campo eléctrico y magnético varía. Las ondas de agua son variaciones en la altura de una masa de agua. En una vibración de red cristalina , las posiciones atómicas varían.

El rango de longitudes de onda o frecuencias de los fenómenos ondulatorios se denomina espectro . El nombre se originó con el espectro de luz visible , pero ahora se puede aplicar a todo el espectro electromagnético , así como a un espectro de sonido o de vibración .

Ondas sinusoidales

En medios lineales , cualquier patrón de onda se puede describir en términos de propagación independiente de componentes sinusoidales. La longitud de onda λ de una forma de onda sinusoidal que viaja a velocidad constante viene dada por [7]

donde se llama velocidad de fase (magnitud de la velocidad de fase ) de la onda y es la frecuencia de la onda . En un medio dispersivo , la velocidad de fase en sí depende de la frecuencia de la onda, lo que hace que la relación entre longitud de onda y frecuencia no sea lineal.

En el caso de la radiación electromagnética —como la luz— en el espacio libre , la velocidad de fase es la velocidad de la luz , aproximadamente 3×10 8  m/s. Por tanto, la longitud de onda de una onda electromagnética (de radio) de 100 MHz es aproximadamente: 3×10 8  m/s dividido por 10 8  Hz = 3 metros. La longitud de onda de la luz visible varía desde el rojo intenso , aproximadamente 700 nm , hasta el violeta , aproximadamente 400 nm (para otros ejemplos, consulte Espectro electromagnético ).

Para las ondas sonoras en el aire, la velocidad del sonido es 343 m/s (a temperatura ambiente y presión atmosférica ). Las longitudes de onda de las frecuencias sonoras audibles para el oído humano (20  Hz –20 kHz) se encuentran, por tanto, entre aproximadamente 17  my 17  mm , respectivamente. Los murciélagos utilizan frecuencias algo más altas para poder resolver objetivos de menos de 17 mm. Las longitudes de onda del sonido audible son mucho más largas que las de la luz visible.

Las ondas estacionarias sinusoidales en un cuadro que limita los puntos finales a ser nodos tendrán un número entero de medias longitudes de onda que caben en el cuadro.
Una onda estacionaria (negra) representada como la suma de dos ondas que se propagan y viajan en direcciones opuestas (roja y azul).

Ondas estacionarias

Una onda estacionaria es un movimiento ondulatorio que permanece en un lugar. Una onda estacionaria sinusoidal incluye puntos estacionarios sin movimiento, llamados nodos , y la longitud de onda es el doble de la distancia entre los nodos.

La figura superior muestra tres ondas estacionarias en un cuadro. Se considera que las paredes de la caja requieren que la onda tenga nodos en las paredes de la caja (un ejemplo de condiciones de contorno ) que determinan qué longitudes de onda están permitidas. Por ejemplo, para una onda electromagnética, si la caja tiene paredes metálicas ideales, la condición para los nodos en las paredes se debe a que las paredes metálicas no pueden soportar un campo eléctrico tangencial, lo que obliga a la onda a tener una amplitud cero en la pared.

La onda estacionaria puede verse como la suma de dos ondas sinusoidales viajeras de velocidades de direcciones opuestas. [8] En consecuencia, la longitud de onda, el período y la velocidad de la onda están relacionados del mismo modo que en el caso de una onda viajera. Por ejemplo, la velocidad de la luz se puede determinar observando ondas estacionarias en una caja de metal que contiene un vacío ideal.

Representación matemática

Las ondas sinusoidales viajeras a menudo se representan matemáticamente en términos de su velocidad v (en la dirección x), frecuencia f y longitud de onda λ como:

donde y es el valor de la onda en cualquier posición x y tiempo t , y A es la amplitud de la onda. También se expresan comúnmente en términos de número de onda k (2π veces el recíproco de la longitud de onda) y frecuencia angular ω (2π veces la frecuencia) como:

en el que la longitud de onda y el número de onda están relacionados con la velocidad y la frecuencia como:

o

En la segunda forma dada anteriormente, la fase ( kxωt ) a menudo se generaliza a ( krωt ) , reemplazando el número de onda k con un vector de onda que especifica la dirección y el número de onda de una onda plana en el espacio tridimensional . parametrizado por el vector de posición r . En ese caso, el número de onda k , la magnitud de k , todavía está en la misma relación con la longitud de onda como se muestra arriba, interpretando v como velocidad escalar en la dirección del vector de onda. La primera forma, que utiliza longitudes de onda recíprocas en la fase, no se generaliza tan fácilmente a una onda en una dirección arbitraria.

También son comunes las generalizaciones a sinusoides de otras fases y a exponenciales complejas; ver onda plana . La convención típica de utilizar la fase coseno en lugar de la fase seno al describir una onda se basa en el hecho de que el coseno es la parte real de la exponencial compleja de la onda.

Medios generales

La longitud de onda disminuye en un medio con una propagación más lenta.
Refracción: al entrar en un medio donde su velocidad es menor, la onda cambia de dirección.
Separación de colores por un prisma (haga clic para ver la animación si aún no se está reproduciendo)

La velocidad de una onda depende del medio en el que se propaga. En particular, la velocidad de la luz en un medio es menor que en el vacío , lo que significa que a la misma frecuencia le corresponderá una longitud de onda más corta en el medio que en el vacío, como se muestra en la figura de la derecha.

Este cambio de velocidad al entrar en un medio provoca la refracción , o un cambio en la dirección de las ondas que encuentran la interfaz entre los medios en ángulo. [9] Para las ondas electromagnéticas , este cambio en el ángulo de propagación se rige por la ley de Snell .

La velocidad de la onda en un medio no sólo puede diferir de la de otro, sino que normalmente varía con la longitud de onda. Como resultado, el cambio de dirección al entrar en un medio diferente cambia con la longitud de onda de la onda.

Para las ondas electromagnéticas, la velocidad en un medio se rige por su índice de refracción según

donde c es la velocidad de la luz en el vacío y n0 ) es el índice de refracción del medio en la longitud de onda λ 0 , donde este último se mide en el vacío en lugar de en el medio. La longitud de onda correspondiente en el medio es

Cuando se citan longitudes de onda de radiación electromagnética, generalmente se entiende la longitud de onda en el vacío, a menos que la longitud de onda se identifique específicamente como la longitud de onda en algún otro medio. En acústica, donde un medio es esencial para que existan las ondas, el valor de la longitud de onda se da para un medio específico.

La variación de la velocidad de la luz con la longitud de onda se conoce como dispersión y también es responsable del conocido fenómeno en el que un prisma separa la luz en colores componentes . La separación ocurre cuando el índice de refracción dentro del prisma varía con la longitud de onda, por lo que diferentes longitudes de onda se propagan a diferentes velocidades dentro del prisma, lo que hace que se refracten en diferentes ángulos. La relación matemática que describe cómo la velocidad de la luz dentro de un medio varía con la longitud de onda se conoce como relación de dispersión .

Medios no uniformes

Varias longitudes de onda locales de cresta a cresta en una ola oceánica que se acerca a la costa [10]

La longitud de onda puede ser un concepto útil incluso si la onda no es periódica en el espacio. Por ejemplo, en una ola oceánica que se acerca a la costa, como se muestra en la figura, la ola entrante ondula con una longitud de onda local variable que depende en parte de la profundidad del fondo del mar en comparación con la altura de la ola. El análisis de la ola puede basarse en la comparación de la longitud de onda local con la profundidad del agua local. [10]

Una onda sinusoidal que viaja en un medio no uniforme, con pérdida

Las ondas que son sinusoidales en el tiempo pero que se propagan a través de un medio cuyas propiedades varían con la posición (un medio no homogéneo ) pueden propagarse a una velocidad que varía con la posición y, como resultado, pueden no ser sinusoidales en el espacio. La figura de la derecha muestra un ejemplo. A medida que la onda se ralentiza, la longitud de onda se acorta y la amplitud aumenta; después de un lugar de máxima respuesta, la longitud de onda corta se asocia con una gran pérdida y la onda se extingue.

El análisis de las ecuaciones diferenciales de tales sistemas a menudo se realiza de forma aproximada, utilizando el método WKB (también conocido como método de Liouville-Green ). El método integra la fase a través del espacio utilizando un número de onda local , que puede interpretarse como una "longitud de onda local" de la solución en función del tiempo y el espacio. [11] [12] Este método trata el sistema localmente como si fuera uniforme con las propiedades locales; en particular, la velocidad de onda local asociada con una frecuencia es lo único que se necesita para estimar el número de onda o longitud de onda local correspondiente. Además, el método calcula una amplitud que cambia lentamente para satisfacer otras restricciones de las ecuaciones o del sistema físico, como la conservación de la energía en la onda.

Cristales

Una onda en una línea de átomos se puede interpretar según una variedad de longitudes de onda.

Las ondas en los sólidos cristalinos no son continuas porque están compuestas de vibraciones de partículas discretas dispuestas en una red regular. Esto produce aliasing porque se puede considerar que la misma vibración tiene una variedad de longitudes de onda diferentes, como se muestra en la figura. [13] Las descripciones que utilizan más de una de estas longitudes de onda son redundantes; es convencional elegir la longitud de onda más larga que se ajuste al fenómeno. El rango de longitudes de onda suficiente para proporcionar una descripción de todas las ondas posibles en un medio cristalino corresponde a los vectores de onda confinados a la zona de Brillouin . [14]

Esta indeterminación de la longitud de onda en los sólidos es importante en el análisis de fenómenos ondulatorios como las bandas de energía y las vibraciones de la red . Es matemáticamente equivalente al aliasing de una señal que se muestrea a intervalos discretos.

Formas de onda más generales

Olas casi periódicas sobre aguas poco profundas

El concepto de longitud de onda se aplica con mayor frecuencia a ondas sinusoidales, o casi sinusoidales, porque en un sistema lineal la sinusoide es la forma única que se propaga sin cambio de forma, solo un cambio de fase y potencialmente un cambio de amplitud. [15] La longitud de onda (o alternativamente el número de onda o el vector de onda ) es una caracterización de la onda en el espacio, que está funcionalmente relacionada con su frecuencia, según lo limita la física del sistema. Las sinusoides son las soluciones de ondas viajeras más simples y se pueden construir soluciones más complejas mediante superposición .

En el caso especial de medios uniformes y sin dispersión, las ondas distintas de las sinusoides se propagan con forma inmutable y velocidad constante. En determinadas circunstancias, también pueden aparecer ondas de forma invariable en medios no lineales; por ejemplo, la figura muestra olas oceánicas en aguas poco profundas que tienen crestas más agudas y valles más planos que los de una sinusoide, típico de una onda cnoidal , [16] una onda viajera llamada así porque está descrita por la función elíptica de Jacobi de m - ésimo orden, generalmente indicado como cn ( x ; m ) . [17] Las olas oceánicas de gran amplitud con ciertas formas pueden propagarse sin cambios, debido a las propiedades del medio de onda superficial no lineal. [18]

Longitud de onda de una forma de onda periódica pero no sinusoidal.

Si una onda viajera tiene una forma fija que se repite en el espacio o en el tiempo, es una onda periódica . [19] A veces se considera que estas ondas tienen una longitud de onda aunque no sean sinusoidales. [20] Como se muestra en la figura, la longitud de onda se mide entre puntos correspondientes consecutivos en la forma de onda.

Paquetes de olas

Un paquete de ondas que se propaga

Los paquetes de ondas localizados , "ráfagas" de acción ondulatoria donde cada paquete de ondas viaja como una unidad, encuentran aplicación en muchos campos de la física. Un paquete de ondas tiene una envolvente que describe la amplitud general de la onda; Dentro de la envolvente, la distancia entre picos o valles adyacentes a veces se denomina longitud de onda local . [21] [22] En la figura se muestra un ejemplo. En general, la envoltura del paquete de ondas se mueve a una velocidad diferente a la de las ondas que lo constituyen. [23]

Utilizando el análisis de Fourier , los paquetes de ondas se pueden analizar en sumas infinitas (o integrales) de ondas sinusoidales de diferentes números de onda o longitudes de onda. [24]

Louis de Broglie postuló que todas las partículas con un valor específico de momento p tienen una longitud de onda λ = h/p , donde h es la constante de Planck . Esta hipótesis estaba en la base de la mecánica cuántica . Hoy en día, esta longitud de onda se denomina longitud de onda de De Broglie . Por ejemplo, los electrones en una pantalla CRT tienen una longitud de onda de De Broglie de aproximadamente 10 −13 m. Para evitar que la función de onda de dicha partícula se extienda por todo el espacio, de Broglie propuso utilizar paquetes de ondas para representar partículas localizadas en el espacio. [25] La dispersión espacial del paquete de ondas y la dispersión de los números de onda de las sinusoides que componen el paquete corresponden a las incertidumbres en la posición y el momento de la partícula, cuyo producto está limitado por el principio de incertidumbre de Heisenberg . [24]

Interferencia y difracción

Interferencia de doble rendija

Patrón de intensidad de luz en una pantalla para la luz que pasa a través de dos rendijas. Las etiquetas de la derecha se refieren a la diferencia de las longitudes de los caminos de las dos rendijas, que aquí se idealizan como fuentes puntuales.

Cuando las formas de onda sinusoidales se suman, pueden reforzarse entre sí (interferencia constructiva) o cancelarse entre sí (interferencia destructiva) dependiendo de su fase relativa. Este fenómeno se utiliza en el interferómetro . Un ejemplo sencillo es un experimento de Young en el que la luz pasa a través de dos rendijas . [26] Como se muestra en la figura, la luz pasa a través de dos rendijas y brilla sobre una pantalla. El camino de la luz hasta una posición en la pantalla es diferente para las dos rendijas y depende del ángulo θ que forma el camino con la pantalla. Si suponemos que la pantalla está lo suficientemente lejos de las rendijas (es decir, s es grande en comparación con la separación de las rendijas d ), entonces los caminos son casi paralelos y la diferencia de caminos es simplemente d sen θ. En consecuencia, la condición para la interferencia constructiva es: [27]

donde m es un número entero y para interferencia destructiva es:

Así, si se conoce la longitud de onda de la luz, se puede determinar la separación de las rendijas a partir del patrón o franjas de interferencia , y viceversa .

Para múltiples rendijas, el patrón es [28]

donde q es el número de rendijas y g es la constante de la rejilla. El primer factor, I 1 , es el resultado de una sola rendija, que modula el segundo factor que varía más rápidamente y depende del número de rendijas y su espaciamiento. En la figura I 1 se ha fijado a la unidad, una aproximación muy aproximada.

El efecto de la interferencia es redistribuir la luz, por lo que la energía contenida en la luz no se altera, sólo donde aparece. [29]

Difracción de rendija simple

El patrón de difracción de una doble rendija tiene una envolvente de una sola rendija .

La noción de diferencia de camino e interferencia constructiva o destructiva utilizada anteriormente para el experimento de la doble rendija se aplica también a la visualización de una única rendija de luz interceptada en una pantalla. El principal resultado de esta interferencia es difundir la luz desde la estrecha rendija hacia una imagen más amplia en la pantalla. Esta distribución de la energía de las olas se llama difracción .

Se distinguen dos tipos de difracción, dependiendo de la separación entre la fuente y la pantalla: difracción de Fraunhofer o difracción de campo lejano en separaciones grandes y difracción de Fresnel o difracción de campo cercano en separaciones cercanas.

En el análisis de la rendija única, se tiene en cuenta el ancho distinto de cero de la rendija y cada punto de la apertura se toma como fuente de una contribución al haz de luz ( ondas de Huygens ). En la pantalla, la luz que llega desde cada posición dentro de la rendija tiene una longitud de recorrido diferente, aunque posiblemente una diferencia muy pequeña. En consecuencia, se produce interferencia.

En el patrón de difracción de Fraunhofer suficientemente lejos de una rendija única, dentro de una aproximación de ángulo pequeño , la dispersión de intensidad S está relacionada con la posición x mediante una función sinc al cuadrado : [30]

 con 

donde L es el ancho de la rendija, R es la distancia del patrón (en la pantalla) desde la rendija y λ es la longitud de onda de la luz utilizada. La función S tiene ceros donde u es un número entero distinto de cero, donde en x los valores están en una proporción de separación con la longitud de onda.

Resolución limitada por difracción

La difracción es la limitación fundamental del poder de resolución de los instrumentos ópticos, como los telescopios (incluidos los radiotelescopios ) y los microscopios . [31] Para una apertura circular, el punto de imagen de difracción limitada se conoce como disco de Airy ; la distancia x en la fórmula de difracción de rendija simple se reemplaza por la distancia radial r y el seno se reemplaza por 2 J 1 , donde J 1 es una función de Bessel de primer orden . [32]

El tamaño espacial resoluble de los objetos vistos a través de un microscopio está limitado según el criterio de Rayleigh , el radio al primer nulo del disco de Airy, a un tamaño proporcional a la longitud de onda de la luz utilizada, y dependiendo de la apertura numérica : [33 ]

donde la apertura numérica se define como para que θ sea el semiángulo del cono de rayos aceptado por el objetivo del microscopio .

El tamaño angular de la porción central brillante (radio al primer nulo del disco de Airy ) de la imagen difractada por una apertura circular, una medida más comúnmente utilizada para telescopios y cámaras, es: [34]

donde λ es la longitud de onda de las ondas que se enfocan para obtener imágenes, D el diámetro de la pupila de entrada del sistema de imágenes, en las mismas unidades, y la resolución angular δ está en radianes.

Al igual que con otros patrones de difracción, el patrón aumenta en proporción a la longitud de onda, por lo que longitudes de onda más cortas pueden conducir a una resolución más alta.

Sublongitud de onda

El término sublongitud de onda se utiliza para describir un objeto que tiene una o más dimensiones más pequeñas que la longitud de la onda con la que interactúa el objeto. Por ejemplo, el término fibra óptica de diámetro inferior a la longitud de onda significa una fibra óptica cuyo diámetro es menor que la longitud de onda de la luz que se propaga a través de ella.

Una partícula por debajo de la longitud de onda es una partícula más pequeña que la longitud de onda de la luz con la que interactúa (ver dispersión de Rayleigh ). Las aperturas por debajo de la longitud de onda son agujeros más pequeños que la longitud de onda de la luz que se propaga a través de ellos. Estas estructuras tienen aplicaciones en transmisión óptica extraordinaria y guías de ondas en modo cero , entre otras áreas de la fotónica .

La sublongitud de onda también puede referirse a un fenómeno que involucra objetos de sublongitud de onda; por ejemplo, imágenes por debajo de la longitud de onda .

Longitud de onda angular

Relación entre longitud de onda, longitud de onda angular y otras propiedades de la onda.

Una cantidad relacionada con la longitud de onda es la longitud de onda angular (también conocida como longitud de onda reducida ), generalmente simbolizada por ƛ ("lambda-bar" o lambda barrada ). Es igual a la longitud de onda ordinaria reducida por un factor de 2π ( ƛ = λ /2π), con unidades del SI de metros por radianes. Es la inversa del número de onda angular ( k =2π/ λ ). Generalmente se encuentra en mecánica cuántica, donde se usa en combinación con la constante de Planck reducida (símbolo ħ , h-bar) y la frecuencia angular (símbolo ω =2π f ).

Ver también

Referencias

  1. ^ Hecht, Eugenio (1987). Óptica (2ª ed.). Addison Wesley. págs. 15-16. ISBN 0-201-11609-X.
  2. ^ Flores de Brian Hilton (2000). "§21.2 Funciones periódicas". Una introducción a los métodos numéricos en C++ (2ª ed.). Prensa de la Universidad de Cambridge. pag. 473.ISBN _ 0-19-850693-7.
  3. ^ Raymond A. Serway; John W. Jewett (2006). Principios de física (4ª ed.). Aprendizaje Cengage. págs.404, 440. ISBN 0-534-49143-X.
  4. ^ AA Sonin (1995). La física de superficies de cristales líquidos . Taylor y Francisco. pag. 17.ISBN _ 2-88124-995-7.
  5. ^ Keqian Zhang y Dejie Li (2007). Teoría electromagnética para microondas y optoelectrónica. Saltador. pag. 533.ISBN _ 978-3-540-74295-1.
  6. ^ Theo Koupelis y Karl F. Kuhn (2007). En Búsqueda del Universo . Editores Jones y Bartlett. pag. 102.ISBN _ 978-0-7637-4387-1. longitud de onda lambda luz sonido frecuencia velocidad de onda.
  7. ^ David C. Cassidy; Gerald James Holton; Floyd James Rutherford (2002). Comprender la física. Birkhäuser. págs. 339 y siguientes . ISBN 0-387-98756-8.
  8. ^ John Avison (1999). El mundo de la física. Nelson Thornes. pag. 460.ISBN _ 978-0-17-438733-6.
  9. ^ Para ayudar a la imaginación, esta curvatura de la ola a menudo se compara con la analogía de una columna de soldados en marcha cruzando desde tierra firme hacia el barro. Véase, por ejemplo, Raymond T. Pierrehumbert (2010). Principios del clima planetario. Prensa de la Universidad de Cambridge. pag. 327.ISBN _ 978-0-521-86556-2.
  10. ^ ab Paul R Pinet (2009). op. cit. Aprendizaje de Jones y Bartlett. pag. 242.ISBN _ 978-0-7637-5993-3.
  11. ^ Bishwanath Chakraborty (2007). Principios de la mecánica del plasma. Nueva Era Internacional. pag. 454.ISBN _ 978-81-224-1446-2.
  12. ^ Jeffrey A. Hogan y Joseph D. Lakey (2005). Métodos de frecuencia temporal y escala temporal: descomposiciones adaptativas, principios de incertidumbre y muestreo. Birkhäuser. pag. 348.ISBN _ 978-0-8176-4276-1.
  13. ^ Véase la Figura 4.20 en A. Putnis (1992). Introducción a las ciencias minerales . Prensa de la Universidad de Cambridge. pag. 97.ISBN _ 0-521-42947-1.y Figura 2.3 en Martin T. Dove (1993). Introducción a la dinámica reticular (4ª ed.). Prensa de la Universidad de Cambridge. pag. 22.ISBN _ 0-521-39293-4.
  14. ^ Manijeh Razeghi (2006). Fundamentos de la ingeniería del estado sólido (2ª ed.). Birkhäuser. págs. 165 y siguientes . ISBN 0-387-28152-5.
  15. ^ Véase Lord Rayleigh (1890). "Teoría de las ondas". Encyclopædia Britannica (9ª ed.). La compañía Henry G Allen. pag. 422.
  16. ^ Valery N. Pilipchuk (2010). "Figura 4.4: Transición de onda cuasiarmónica a onda cnoidal". Dinámica no lineal: entre límites lineales y de impacto . Saltador. pag. 127.ISBN _ 978-3642127984.
  17. ^ Andréi Ludu (2012). "§18.3 Funciones especiales". Ondas no lineales y solitones en contornos y superficies cerradas (2ª ed.). Saltador. págs. 469 y siguientes . ISBN 978-3642228940.
  18. ^ Alfred Osborne (2010). "Capítulo 1: Breve historia y descripción general de las ondas de agua no lineales". "Ondas oceánicas no lineales y transformación de dispersión inversa ". Prensa académica. págs.3 y siguientes . ISBN 978-0-12-528629-9.
  19. ^ Alejandro McPherson (2009). "Las ondas y sus propiedades". Introducción a la cristalografía macromolecular (2 ed.). Wiley. pag. 77.ISBN _ 978-0-470-18590-2.
  20. ^ Eric Stade (2011). Análisis de Fourier. John Wiley e hijos. pag. 1.ISBN _ 978-1-118-16551-5.
  21. ^ Peter R. Holanda (1995). La teoría cuántica del movimiento: una explicación de la interpretación causal de la mecánica cuántica de De Broglie-Bohm. Prensa de la Universidad de Cambridge. pag. 160.ISBN _ 978-0-521-48543-2.
  22. ^ Jeffery Cooper (1998). Introducción a las ecuaciones diferenciales parciales con MATLAB. Saltador. pag. 272.ISBN _ 0-8176-3967-5. La longitud de onda local λ de una onda dispersante es el doble de la distancia entre dos ceros sucesivos. ... la longitud de onda local y el número de onda local k están relacionados por k = 2π / λ.
  23. ^ EN Fromhold (1991). "Soluciones de paquetes de ondas". Mecánica cuántica para la física e ingeniería aplicadas (reimpresión de Academic Press, edición de 1981). Publicaciones de Courier Dover. págs.59 y siguientes . ISBN 0-486-66741-3. (p. 61) ... las ondas individuales se mueven más lentamente que el paquete y, por lo tanto, regresan a través del paquete a medida que avanza.
  24. ^ ab Véanse, por ejemplo, las Figs. 2,8–2,10 en Joy Manners (2000). "El principio de incertidumbre de Heisenberg". Física cuántica: una introducción . Prensa CRC. págs. 53–56. ISBN 978-0-7503-0720-8.
  25. ^ Ming Chiang Li (1980). "Interferencia electrónica". En L. Marton; Claire Marton (eds.). Avances en Electrónica y Física Electrónica . vol. 53. Prensa académica. pag. 271.ISBN _ 0-12-014653-3.
  26. ^ Greenfield Sluder y David E. Wolf (2007). "IV. Experimento de Young: interferencia de dos rendijas". Microscopía digital (3ª ed.). Prensa académica. pag. 15.ISBN _ 978-0-12-374025-0.
  27. ^ Halliday; Resnick; Caminante (2008). "§35-4 Experimento de interferencia de Young". Fundamentos de Física (8ª ed. ampliada). Wiley-India. pag. 965.ISBN _ 978-81-265-1442-7.
  28. ^ Kordt Griepenkerl (2002). "§9.8.2 Difracción por rejilla". En John W. Harris; Walter Benenson; Horst Stöcker; Holger Lutz (eds.). Manual de física . Saltador. págs. 307 y siguientes . ISBN 0-387-95269-1.
  29. ^ Douglas B. Murphy (2002). Fundamentos de microscopía óptica e imágenes electrónicas. Wiley/IEEE. pag. 64.ISBN _ 0-471-23429-X.
  30. ^ John C. Stover (1995). Dispersión óptica: medición y análisis (2ª ed.). Prensa SPIE. pag. 64.ISBN _ 978-0-8194-1934-7.
  31. ^ Graham Saxby (2002). "Limitación de difracción". La ciencia de la imagen . Prensa CRC. pag. 57.ISBN _ 0-7503-0734-X.
  32. ^ Grant R. Fowles (1989). Introducción a la Óptica Moderna. Publicaciones de Courier Dover. págs. 117-120. ISBN 978-0-486-65957-2.
  33. ^ James B. Pawley (1995). Manual de microscopía confocal biológica (2ª ed.). Saltador. pag. 112.ISBN _ 978-0-306-44826-3.
  34. ^ Ray N. Wilson (2004). Óptica de telescopios reflectores I: teoría básica del diseño y su desarrollo histórico. Saltador. pag. 302.ISBN _ 978-3-540-40106-3.

enlaces externos