El término "similar a un roton" también se utiliza para los modos propios predichos en metamateriales 3D mediante acoplamiento más allá del vecino más cercano. [1] [2] La observación de dicha relación de dispersión "similar a un roton" se demostró en condiciones ambientales tanto para ondas de presión acústica en un metamaterial basado en canales a frecuencias audibles como para ondas elásticas transversales en un metamaterial de microescala a frecuencias de ultrasonido. [3]
Modelos
Originalmente, el espectro de roton fue introducido fenomenológicamente por Lev Landau en 1947. [4] Actualmente existen modelos que intentan explicar el espectro de roton con diversos grados de éxito y fundamentalidad. [5] [6] El requisito para cualquier modelo de este tipo es que debe explicar no solo la forma del espectro en sí, sino también otros observables relacionados, como la velocidad del sonido y el factor de estructura del helio-4 superfluido . Se han realizado espectroscopias de microondas y Bragg en helio para estudiar el espectro de roton. [7]
Condensación de Bose-Einstein
También se ha propuesto y estudiado la condensación de Bose-Einstein de rotones. [8] Su primera detección se informó en 2018. [9] En condiciones específicas, el mínimo de rotones da lugar a una estructura similar a un sólido cristalino llamada supersólido , como se muestra en experimentos de 2019. [10] [11] [12]
^ Wang, Ke; Chen, Yi; Kadic, Muamer; Wang, Changguo; Wegener, Martin (24 de mayo de 2022). "Ingeniería de interacción no local de relaciones de dispersión tipo roton 2D en metamateriales acústicos y mecánicos". Materiales de comunicación . 3 (1): 35. Bibcode :2022CoMat...3...35W. doi : 10.1038/s43246-022-00257-z . S2CID 248991736.
^ Chen, Yi; Kadic, Muamer; Wegener, Martin (2 de junio de 2021). "Relaciones de dispersión acústica de tipo Roton en metamateriales 3D". Nature Communications . 12 (1): 3278. Bibcode :2021NatCo..12.3278C. doi :10.1038/s41467-021-23574-2. PMC 8172548 . PMID 34078904.
^ Iglesias Martínez, Julio Andrés; Groß, Michael Fidelis; Chen, Yi; Frenzel, Tobías; Laude, Vicente; Kadic, Muamer; Wegener, Martín (3 de diciembre de 2021). "Observación experimental de relaciones de dispersión similares a rotones en metamateriales". Avances científicos . 7 (49): eabm2189. Código Bib : 2021SciA....7.2189I. doi :10.1126/sciadv.abm2189. ISSN 2375-2548. PMC 8635434 . PMID 34851658.
^ Landau, LD (1947). Sobre la teoría de la superfluidez del helio II. Física-Uspekhi, 11(1), 91.
^ Bisset, RN; Blakie, PB (26 de junio de 2013). "Huellas dactilares de rotones en un condensado dipolar: pico superpoissoniano en las fluctuaciones del número de átomos". Phys. Rev. Lett . 110 (26): 265302. arXiv : 1304.3605 . Código Bibliográfico :2013PhRvL.110z5302B. doi :10.1103/PhysRevLett.110.265302. PMID 23848891. S2CID 24788775.
^ Blakie, PB; Baillie, D.; Bisset, RN (15 de agosto de 2012). "Espectroscopia de Roton en un condensado de Bose–Einstein dipolar atrapado armónicamente". Phys. Rev. A . 86 (2): 021604. arXiv : 1206.2770 . Código Bibliográfico :2012PhRvA..86b1604B. doi :10.1103/PhysRevA.86.021604. S2CID 119285430.
^ Rybalko, A.; Rubets, S.; Rudavskii, E.; Tikhiy, V.; Poluectov, Y.; Golovashchenko, R.; Derkach, V.; Tarapov, S.; Usatenko, O. (4 de noviembre de 2009). "Espectroscopia de microondas de helio condensado en la frecuencia de Roton". Revista de Física de Bajas Temperaturas . 158 (1–2): 244–249. Código Bib : 2010JLTP..158..244R. doi :10.1007/s10909-009-0025-6. S2CID 120191282.
^ Glyde, Henry R. (diciembre de 1993). "El papel del condensado en la existencia de fonones y rotones". Journal of Low Temperature Physics . 93 (5–6): 861–878. Bibcode :1993JLTP...93..861G. doi :10.1007/BF00692035. S2CID 122151606.
^ Chomaz, L. (2018). "Observación de la población del modo roton en un gas cuántico dipolar". Nature Physics . 14 (5): 442–446. arXiv : 1705.06914 . Bibcode :2018NatPh..14..442C. doi :10.1038/s41567-018-0054-7. PMC 5972007 . PMID 29861780.
^ Donner, Tobias (3 de abril de 2019). "Los gases cuánticos dipolares se vuelven supersólidos". Física . 12 : 38. Bibcode :2019PhyOJ..12...38D. doi : 10.1103/Physics.12.38 .
^ "Tres equipos demuestran de forma independiente que los gases cuánticos dipolares respaldan el estado de las propiedades supersólidas".
^ Henkel, N.; Nath, R.; Pohl, T. (11 de mayo de 2010). "Excitaciones de Roton tridimensionales y formación de supersólidos en condensados de Bose-Einstein excitados por Rydberg". Physical Review Letters . 104 (19): 195302. arXiv : 1001.3250 . Código Bibliográfico :2010PhRvL.104s5302H. doi :10.1103/PhysRevLett.104.195302. PMID 20866972. S2CID 14445701.
Bibliografía
Feynman, RP (1 de abril de 1957). «Superfluidez y superconductividad». Reseñas de Física Moderna . 29 (2): 205–212. Código Bibliográfico :1957RvMP...29..205F. doi :10.1103/RevModPhys.29.205. Archivado desde el original el 29 de junio de 2023. Consultado el 1 de julio de 2022 .