stringtranslate.com

Fortran

Fortran ( / ˈf ɔːr t r æ n / ; anteriormente FORTRAN ) es un lenguaje de programación imperativo compilado de tercera generación que es especialmente adecuado para el cálculo numérico y el cálculo científico .

Fortran fue desarrollado originalmente por IBM . [3] Se compiló correctamente por primera vez en 1958. [4] Los programas informáticos Fortran se han escrito para respaldar aplicaciones científicas y de ingeniería, como la predicción numérica del tiempo , el análisis de elementos finitos , la dinámica de fluidos computacional , la geofísica , la física computacional , la cristalografía y la química computacional . Es un lenguaje popular para la computación de alto rendimiento [5] y se utiliza para programas que evalúan y clasifican las supercomputadoras más rápidas del mundo . [6] [7]

La instalación de la supercomputadora IBM Blue Gene/P en 2007 en el Argonne Leadership Angela Yang Computing Facility, ubicado en el Laboratorio Nacional Argonne , en Lemont , Illinois , EE. UU.

Fortran ha evolucionado a través de numerosas versiones y dialectos. En 1966, el Instituto Nacional Estadounidense de Estándares (ANSI) desarrolló un estándar para Fortran para limitar la proliferación de compiladores que utilizan una sintaxis ligeramente diferente. [8] Las versiones sucesivas han añadido soporte para un tipo de datos de carácter (Fortran 77), programación estructurada , programación matricial , programación modular , programación genérica (Fortran 90), computación paralela ( Fortran 95 ), programación orientada a objetos (Fortran 2003) y programación concurrente (Fortran 2008).

Árbol genealógico de FORTRAN y COBOL

Desde abril de 2024, Fortran se encuentra entre los diez mejores lenguajes en el índice TIOBE , una medida de la popularidad de los lenguajes de programación. [9]

Nombramiento

El primer manual de FORTRAN lo describe como un sistema de traducción de fórmulas y escribe el nombre en mayúsculas pequeñas : Fortran . [10] : p.2  [11] Otras fuentes sugieren que el nombre significa Traductor de fórmulas , [12] o Traducción de fórmulas . [13]

Las primeras computadoras IBM no admitían letras minúsculas , y los nombres de las versiones del lenguaje hasta FORTRAN 77 generalmente se escribían en mayúsculas . [ 14] FORTRAN 77 fue la última versión en la que el conjunto de caracteres Fortran incluía solo letras mayúsculas. [15]

Los estándares oficiales del lenguaje Fortran se refieren al lenguaje como "Fortran" con mayúscula inicial desde Fortran 90. [ cita requerida ]

Orígenes

John Backus (1924–2007) propuso el proyecto FORTRAN en diciembre de 1953 y recibió el Premio AM Turing en 1977.

A finales de 1953, John W. Backus presentó una propuesta a sus superiores en IBM para desarrollar una alternativa más práctica al lenguaje ensamblador para programar su computadora mainframe IBM 704. [11] : 69  El histórico equipo FORTRAN de Backus estaba formado por los programadores Richard Goldberg, Sheldon F. Best, Harlan Herrick, Peter Sheridan, Roy Nutt , Robert Nelson, Irving Ziller, Harold Stern, Lois Haibt y David Sayre . [16] Sus conceptos incluían una entrada más sencilla de ecuaciones en una computadora, una idea desarrollada por J. Halcombe Laning y demostrada en el sistema de Laning y Zierler de 1952. [17]

El sistema de codificación automática Fortran para IBM 704 (15 de octubre de 1956), el primer manual de referencia para programadores de Fortran [10]

En noviembre de 1954 se completó un borrador de especificación para el Sistema de traducción de fórmulas matemáticas de IBM. [11] : 71  El primer manual para FORTRAN apareció en octubre de 1956, [10] [11] : 72  y el primer compilador de FORTRAN se entregó en abril de 1957. [11] : 75  Fortran produjo un código lo suficientemente eficiente para que los programadores de lenguaje ensamblador aceptaran un reemplazo de lenguaje de programación de alto nivel . [18]

John Backus dijo durante una entrevista de 1979 con Think , la revista para empleados de IBM: "Gran parte de mi trabajo ha sido fruto de mi pereza. No me gustaba escribir programas, así que, cuando estaba trabajando en el IBM 701 , escribiendo programas para calcular trayectorias de misiles, empecé a trabajar en un sistema de programación para facilitar la escritura de programas". [19]

El lenguaje fue ampliamente adoptado por los científicos para escribir programas con uso intensivo de números, lo que animó a los desarrolladores de compiladores a producir compiladores que pudieran generar código más rápido y eficiente. La inclusión de un tipo de datos de números complejos en el lenguaje hizo que Fortran fuera especialmente adecuado para aplicaciones técnicas como la ingeniería eléctrica. [20]

En 1960, ya existían versiones de FORTRAN para las computadoras IBM 709 , 650 , 1620 y 7090. Cabe destacar que la creciente popularidad de FORTRAN impulsó a los fabricantes de computadoras de la competencia a ofrecer compiladores FORTRAN para sus máquinas, de modo que en 1963 ya existían más de 40 compiladores FORTRAN.

FORTRAN fue proporcionado para la computadora IBM 1401 por un compilador innovador de 63 fases que corría completamente en su memoria central de sólo 8000 caracteres (seis bits). El compilador podía ejecutarse desde una cinta o desde una baraja de 2200 cartas; no utilizaba más almacenamiento en cinta o disco. Mantenía el programa en la memoria y cargaba superposiciones que lo transformaban gradualmente, en su lugar, en forma ejecutable, como lo describe Haines. [21] Este artículo fue reimpreso, editado, en ambas ediciones de Anatomy of a Compiler [22] y en el manual de IBM "Fortran Specification and Operating Procedures, IBM 1401". [23] La forma ejecutable no era completamente lenguaje de máquina ; más bien, se interpretaban aritmética de punto flotante, subíndices, entrada/salida y referencias de función, precediendo al código P Pascal UCSD por dos décadas. GOTRAN , una versión simplificada e interpretada de FORTRAN I (con solo 12 instrucciones, no 32) para operaciones de "carga y listo" estaba disponible (al menos para la primera computadora IBM 1620 ). [24] El Fortran moderno, y casi todas las versiones posteriores, están completamente compiladas, como se hace para otros lenguajes de alto rendimiento.

El desarrollo de Fortran fue paralelo a la evolución temprana de la tecnología de compiladores , y muchos avances en la teoría y el diseño de compiladores fueron motivados específicamente por la necesidad de generar código eficiente para programas Fortran.

FORTRAN

La versión inicial de FORTRAN para IBM 704 [10] contenía 32 declaraciones , entre ellas:

La instrucción aritmética IFrecordaba a (pero no era fácilmente implementable por) una instrucción de comparación de tres vías (CAS, Compare Accumulator with Storage) disponible en el 704. La instrucción proporcionaba la única manera de comparar números, probando su diferencia, con el consiguiente riesgo de desbordamiento. Esta deficiencia fue superada más tarde por las funciones "lógicas" introducidas en FORTRAN IV.

La FREQUENCYdeclaración se utilizó originalmente (y opcionalmente) para dar probabilidades de bifurcación para los tres casos de bifurcación de la IFdeclaración aritmética. También podría utilizarse para sugerir cuántas iteraciones DOpodría ejecutar un bucle. El primer compilador FORTRAN utilizó esta ponderación para realizar en tiempo de compilación una simulación de Monte Carlo del código generado, cuyos resultados se utilizaron para optimizar la colocación de bloques básicos en la memoria, una optimización muy sofisticada para su época. La técnica de Monte Carlo está documentada en el artículo de Backus et al. sobre esta implementación original, The FORTRAN Automatic Coding System :

La unidad fundamental del programa es el bloque básico ; un bloque básico es un tramo de programa que tiene un punto de entrada y un punto de salida. El propósito de la sección 4 es preparar para la sección 5 una tabla de predecesores (tabla PRED) que enumera los bloques básicos y enumera para cada bloque básico cada uno de los bloques básicos que pueden ser su predecesor inmediato en el flujo, junto con la frecuencia absoluta de cada uno de esos enlaces de bloques básicos. Esta tabla se obtiene ejecutando el programa una vez en modo Montecarlo, en el que el resultado de las transferencias condicionales que surgen de las instrucciones de tipo IF y GO TO calculados se determina mediante un generador de números aleatorios adecuadamente ponderado de acuerdo con las instrucciones FREQUENCY que se hayan proporcionado. [16]

El primer compilador FORTRAN informaba de la información de diagnóstico deteniendo el programa cuando se encontraba un error y mostrando un código de error en su consola. El programador podía buscar ese código en una tabla de mensajes de error en el manual del operador, lo que le proporcionaba una breve descripción del problema. [10] : p.19–20  [25] Más tarde, se incorporó una subrutina de manejo de errores para manejar errores del usuario como la división por cero, desarrollada por la NASA, [26] que informaba a los usuarios de qué línea de código contenía el error.

Diseño fijo y tarjetas perforadas

Código FORTRAN en una tarjeta perforada , que muestra los usos especializados de las columnas 1 a 5, 6 y 73 a 80
Reproducción de un formato de codificación FORTRAN, impreso en papel y destinado a ser utilizado por programadores para preparar programas que los operadores de máquinas perforadoras debían perforar en tarjetas . Actualmente obsoleto.

Antes del desarrollo de los archivos de disco, los editores de texto y las terminales, los programas se introducían con mayor frecuencia en un teclado perforado en tarjetas perforadas de 80 columnas , una línea por tarjeta. La baraja de tarjetas resultante se introducía en un lector de tarjetas para su compilación. Los códigos de las tarjetas perforadas no incluían letras minúsculas ni muchos caracteres especiales, y se ofrecían versiones especiales de la perforadora IBM 026 que imprimían correctamente los caracteres especiales reutilizados que se utilizaban en FORTRAN.

Como reflejo de la práctica de entrada de datos con tarjetas perforadas, los programas Fortran se escribieron originalmente en un formato de columnas fijas, en el que las primeras 72 columnas se leían en doce palabras de 36 bits.

La letra "C" en la columna 1 hacía que toda la tarjeta se tratara como un comentario y el compilador la ignorara. De lo contrario, las columnas de la tarjeta se dividían en cuatro campos:

Por lo tanto, las columnas 73 a 80 se podían utilizar para información de identificación, como perforar un número de secuencia o texto, que se podía utilizar para reordenar las tarjetas si se caía una pila de tarjetas; aunque en la práctica esto estaba reservado para programas de producción estables. Se podía utilizar un IBM 519 para copiar una baraja de programas y añadir números de secuencia. Algunos compiladores tempranos, por ejemplo, los IBM 650, tenían restricciones adicionales debido a limitaciones en sus lectores de tarjetas. [28] Los perforadores de teclado se podían programar para pasar a la columna 7 y saltar después de la columna 72. Los compiladores posteriores relajaron la mayoría de las restricciones de formato fijo, y el requisito se eliminó en el estándar Fortran 90.

Dentro del campo de declaración, los caracteres de espacio en blanco (espacios en blanco) se ignoraban fuera de un literal de texto. Esto permitía omitir espacios entre tokens para abreviar o incluir espacios dentro de identificadores para mayor claridad. Por ejemplo, AVG OF Xera un identificador válido, equivalente a AVGOFX, y era una declaración válida, equivalente a porque el cero en la columna 6 se trata como si fuera un espacio (!), mientras que era en cambio , la asignación de 1.101 a una variable llamada . Observe la ligera diferencia visual entre una coma y un punto.101010DO101I=1,10110101 DO 101 I = 1, 101101010DO101I=1.10110101 DO101I = 1.101DO101I

Las cadenas Hollerith , que originalmente solo se permitían en las instrucciones FORMAT y DATA, tenían como prefijo un recuento de caracteres y la letra H (por ejemplo, 26HTHIS IS ALPHANUMERIC DATA.), lo que permitía conservar espacios en blanco dentro de la cadena de caracteres. Los recuentos incorrectos eran un problema.

Evolución

FORTRAN II

FORTRAN II de IBM apareció en 1958. La mejora principal fue la compatibilidad con la programación procedimental , permitiendo subrutinas y funciones escritas por el usuario que devolvían valores con parámetros pasados ​​por referencia . La sentencia COMMON proporcionó una forma para que las subrutinas accedieran a variables comunes (o globales ). Se introdujeron seis sentencias nuevas: [29]

En los siguientes años, FORTRAN II agregó soporte para los tipos de datos DOUBLE PRECISIONy COMPLEX.

Los primeros compiladores FORTRAN no admitían recursión en subrutinas. Las primeras arquitecturas informáticas no admitían el concepto de pila y, cuando admitían directamente llamadas a subrutinas, la ubicación de retorno se almacenaba a menudo en una ubicación fija adyacente al código de subrutina (por ejemplo, IBM 1130 ) o en un registro de máquina específico ( IBM 360 y siguientes ), que solo permite la recursión si se mantiene una pila mediante software y la dirección de retorno se almacena en la pila antes de que se realice la llamada y se restaura después de que la llamada regrese. Aunque no se especifica en FORTRAN 77, muchos compiladores F77 admitían la recursión como una opción, y los mainframes Burroughs , diseñados con la recursión incorporada, lo hacían de forma predeterminada. Se convirtió en un estándar en Fortran 90 a través de la nueva palabra clave RECURSIVE. [30]

Programa sencillo en FORTRAN II

Este programa, para la fórmula de Heron , lee datos en un carrete de cinta que contiene tres números enteros de 5 dígitos A, B y C como entrada. No hay declaraciones de "tipo" disponibles: las variables cuyo nombre comienza con I, J, K, L, M o N son "de punto fijo" (es decir, números enteros), de lo contrario, son de punto flotante. Dado que en este ejemplo se procesarán números enteros, los nombres de las variables comienzan con la letra "I". El nombre de una variable debe comenzar con una letra y puede continuar con letras y dígitos, hasta un límite de seis caracteres en FORTRAN II. Si A, B y C no pueden representar los lados de un triángulo en geometría plana, entonces la ejecución del programa finalizará con un código de error de "STOP 1". De lo contrario, se imprimirá una línea de salida que muestra los valores de entrada para A, B y C, seguido por el ÁREA calculada del triángulo como un número de punto flotante que ocupa diez espacios a lo largo de la línea de salida y muestra 2 dígitos después del punto decimal, el .2 en F10.2 de la declaración FORMAT con etiqueta 601.

C ÁREA DE UN TRIÁNGULO CON UNA FUNCIÓN DE RAÍZ CUADRADA ESTÁNDAR C ENTRADA - UNIDAD LECTORA DE CINTA 5, ENTRADA ENTERA C SALIDA - UNIDAD IMPRESORA DE LÍNEA 6, SALIDA REAL C ERROR DE ENTRADA VISUALIZACIÓN CÓDIGO DE SALIDA DE ERROR 1 EN LISTA DE CONTROL DE TRABAJOS LECTURA DE ENTRADA CINTA 5 , 501 , IA , IB , IC  501 FORMATO ( 3 I5 ) C IA, IB E IC NO PUEDEN SER NEGATIVOS O CERO C ADEMÁS, LA SUMA DE DOS LADOS DE UN TRIÁNGULO C DEBE SER MAYOR QUE EL TERCER LADO, POR LO QUE TAMBIÉN COMPROBAMOS ESO SI ( IA ) 777 , 777 , 701  701 SI ( IB ) 777 , 777 , 702  702 SI ( IC ) 777 , 777 , 703  703 SI ( IA + IB - IC ) 777 , 777 , 704  704 SI ( IA + IC - IB ) 777 , 777 , 705  705 SI ( IB + IC - IA ) 777 , 777 , 799  777 ALTO 1 C USANDO LA FÓRMULA DE HERON CALCULAMOS EL ÁREA C DEL TRIÁNGULO  799 S = FLOATF ( IA + IB + IC ) / 2.0 ÁREA = SQRTF ( S * ( S - FLOATF ( IA )) * ( S - FLOATF ( IB )) * + ( S - FLOATF ( IC ))) ESCRIBIR SALIDA CINTA 6 , 601 , IA , IB , IC , ÁREA  601 FORMATO ( 4 H A = , I5 , 5 H B                                                                                    = , I5 , 5 H C = , I5 , 8 H ÁREA = , F10 . 2 , + 13 H UNIDADES CUADRADAS ) DETENER FIN             

FORTRAN III

IBM también desarrolló un FORTRAN III en 1958 que permitía el código ensamblador en línea , entre otras características; sin embargo, esta versión nunca se lanzó como producto. Al igual que el FORTRAN 704 y el FORTRAN II, FORTRAN III incluía características dependientes de la máquina que hacían que el código escrito en él no fuera transferible de una máquina a otra. [11] : 76  Las primeras versiones de FORTRAN proporcionadas por otros proveedores sufrieron la misma desventaja.

FORTRAN IV

IBM comenzó a desarrollar FORTRAN IV en 1961, como resultado de las demandas de los clientes. FORTRAN IV eliminó las características dependientes de la máquina de FORTRAN II (como READ INPUT TAPE), al tiempo que agregó nuevas características como un LOGICALtipo de datos , expresiones booleanas lógicas y la declaración IF lógica como alternativa a la declaración IF aritmética. FORTRAN IV finalmente se lanzó en 1962, primero para la computadora IBM 7030 ("Stretch"), seguida por versiones para IBM 7090 , IBM 7094 y más tarde para IBM 1401 en 1966. [31]

En 1965, se suponía que FORTRAN IV cumpliría con el estándar que estaba desarrollando el Grupo de Trabajo FORTRAN X3.4.3 de la Asociación Estadounidense de Estándares . [32]

Entre 1966 y 1968, IBM ofreció varios compiladores FORTRAN IV para su System/360 , cada uno nombrado con letras que indicaban la cantidad mínima de memoria que el compilador necesitaba para ejecutarse. [33] Las letras (F, G, H) coincidían con los códigos utilizados con los números de modelo del System/360 para indicar el tamaño de la memoria, siendo cada incremento de letra un factor de dos más grande: [34] : p. 5 

Digital Equipment Corporation mantuvo el sistema Fortran IV (F40) de DECSYSTEM-10 para PDP-10 desde 1967 hasta 1975. [35] También había compiladores disponibles para la serie UNIVAC 1100 y los sistemas de las series Control Data 6000 y 7000. [36]

Aproximadamente en esa época, FORTRAN IV había comenzado a convertirse en una herramienta educativa importante y se crearon implementaciones como WATFOR y WATFIV de la Universidad de Waterloo para simplificar los complejos procesos de compilación y enlace de los compiladores anteriores.

En el entorno de programación FORTRAN IV de la época, a excepción del utilizado en los sistemas de Control Data Corporation (CDC), solo se colocaba una instrucción por línea. La versión CDC permitía colocar varias instrucciones por línea si se separaban con el carácter $ (dólar). La hoja FORTRAN se dividía en cuatro campos, como se describió anteriormente.

Dos compiladores de la época, IBM "G" y UNIVAC, permitían escribir comentarios en la misma línea que las instrucciones, separados por un carácter especial: "espacio maestro": V (perforaciones 7 y 8) para UNIVAC y perforaciones 12/11/0/7/8/9 (FF hexadecimal) para IBM. Estos comentarios no debían insertarse en medio de las tarjetas de continuación. [35] [36]

FORTRAN 66

Tal vez el desarrollo más significativo en la historia temprana de FORTRAN fue la decisión de la Asociación Estadounidense de Estándares (ahora Instituto Nacional Estadounidense de Estándares (ANSI)) de formar un comité patrocinado por la Asociación de Fabricantes de Equipos Comerciales (BEMA) para desarrollar un Fortran Estándar Americano . Los dos estándares resultantes, aprobados en marzo de 1966, definieron dos lenguajes, FORTRAN (basado en FORTRAN IV, que había servido como estándar de facto) y FORTRAN Básico (basado en FORTRAN II, pero despojado de sus características dependientes de la máquina). El FORTRAN definido por el primer estándar, oficialmente denominado X3.9-1966, se conoció como FORTRAN 66 (aunque muchos continuaron llamándolo FORTRAN IV, el lenguaje en el que se basó en gran medida el estándar). FORTRAN 66 se convirtió efectivamente en la primera versión estándar de la industria de FORTRAN. FORTRAN 66 incluía:

La versión Fortran II del programa Heron que se muestra arriba necesita varias modificaciones para compilarse como un programa Fortran 66. Las modificaciones incluyen el uso de versiones más independientes de la máquina de las instrucciones READy WRITE, y la eliminación de las FLOATFfunciones de conversión de tipos innecesarias. Aunque no es obligatorio, las instrucciones aritméticas IFse pueden reescribir para usar IFinstrucciones y expresiones lógicas de una manera más estructurada.

C ÁREA DE UN TRIÁNGULO CON UNA FUNCIÓN DE RAÍZ CUADRADA ESTÁNDAR C ENTRADA - UNIDAD LECTORA DE CINTA 5, ENTRADA ENTERA C SALIDA - UNIDAD IMPRESORA DE LÍNEA 6, SALIDA REAL C ENTRADA ERROR VISUALIZACIÓN CÓDIGO DE SALIDA DE ERROR 1 EN LISTA DE CONTROL DE TRABAJO LEER ( 5 , 501 ) IA , IB , IC  501 FORMATO ( 3 I5 ) C C IA, IB E IC NO PUEDEN SER NEGATIVOS O CERO C ADEMÁS, LA SUMA DE DOS LADOS DE UN TRIÁNGULO C DEBE SER MAYOR QUE EL TERCER LADO, POR LO QUE TAMBIÉN COMPROBAMOS ESO SI ( IA . GT . 0 . Y . IB . GT . 0 . Y . IC . GT . 0 ) IR A 10 ESCRIBIR ( 6 , 602 )  602 FORMATO ( 42 H IA , IB E IC DEBEN SER MAYORES QUE CERO .) ALTO 1  10 CONTINUAR C SI ( IA + IB - IC . GT . 0 + . Y . IA + IC - IB . GT . 0 + . Y . IB + IC - IA . GT . 0 ) IR A 20 ESCRIBIR ( 6 , 603 )  603 FORMATO ( 50 H LA SUMA DE DOS LADOS DEBE SER MAYOR QUE EL TERCER LADO .) ALTO 1 20  CONTINUAR C C USANDO LA FÓRMULA DE HERON CALCULAMOS EL ÁREA C DEL TRIÁNGULO S = ( IA + IB + IC ) / 2.0 ÁREA = RAÍZ CUADRADA ( S * ( S - IA ) *                                                                                                        ( S - IB ) * ( S - IC )) ESCRIBIR ( 6 , 601 ) IA , IB , IC , ÁREA  601 FORMATO ( 4 H A = , I5 , 5 H B = , I5 , 5 H C = , I5 , 8 H ÁREA = , F10 . 2 , + 13 H UNIDADES CUADRADAS ) DETENER FIN                                

FORTRAN 77

Programa FORTRAN-77 con salida de compilador, escrito en un CDC 175 en la Universidad RWTH de Aachen , Alemania, en 1987
4.3 BSD para VAX de Digital Equipment Corporation (DEC) , que muestra el manual del compilador FORTRAN 77 (f77)

Después del lanzamiento del estándar FORTRAN 66, los proveedores de compiladores introdujeron varias extensiones al estándar Fortran , lo que impulsó al comité ANSI X3J3 en 1969 a comenzar a trabajar en la revisión del estándar de 1966, bajo el patrocinio de CBEMA , la Asociación de Fabricantes de Equipos de Negocios Informáticos (anteriormente BEMA). Los borradores finales de este estándar revisado circularon en 1977, lo que llevó a la aprobación formal del nuevo estándar FORTRAN en abril de 1978. El nuevo estándar, llamado FORTRAN 77 y oficialmente denominado X3.9-1978, agregó una serie de características significativas para abordar muchas de las deficiencias de FORTRAN 66:

En esta revisión del estándar, se eliminaron o modificaron varias características de manera que podrían invalidar programas que anteriormente cumplían con el estándar. (La eliminación era la única alternativa permitida a X3J3 en ese momento, ya que el concepto de " obsolescencia " aún no estaba disponible para los estándares ANSI). Si bien la mayoría de los 24 elementos de la lista de conflictos (consulte el Apéndice A2 de X3.9-1978) abordaban lagunas o casos patológicos permitidos por el estándar anterior pero rara vez utilizados, se eliminaron deliberadamente una pequeña cantidad de capacidades específicas, como:

Una versión Fortran 77 del programa Heron no requiere modificaciones en la versión Fortran 66. Sin embargo, este ejemplo demuestra una limpieza adicional de las instrucciones de E/S, incluido el uso de E/S dirigidas por listas y el reemplazo de los descriptores de edición Hollerith en las FORMATinstrucciones con cadenas entre comillas. También utiliza instrucciones IFand estructuradas END IFen lugar de GOTO/ CONTINUE.

  PROGRAMA HERON C ÁREA DE UN TRIÁNGULO CON UNA FUNCIÓN RAÍZ CUADRADA ESTÁNDAR ENTRADA C - UNIDAD DE ENTRADA ESTÁNDAR PREDETERMINADA, ENTRADA ENTERA C SALIDA - UNIDAD DE SALIDA ESTÁNDAR PREDETERMINADA, SALIDA REAL C ERROR DE ENTRADA VISUALIZACIÓN CÓDIGO DE SALIDA DE ERROR 1 EN LA LISTA DE CONTROL DE TRABAJO LEER ( * , * ) IA , IB , IC C C IA, IB Y IC NO PUEDEN SER NEGATIVOS O CERO C ADEMÁS, LA SUMA DE DOS LADOS DE UN TRIÁNGULO C DEBE SER MAYOR QUE EL TERCER LADO, ASÍ QUE COMPROBAMOS ESO TAMBIÉN SI ( IA . LE . 0 . O . IB . LE . 0 . O . IC . LE . 0 ) ENTONCES ESCRIBIR ( * , * ) 'IA, IB y IC deben ser mayores que cero.' STOP 1 END IF C IF ( IA + IB - IC . LE . 0 + . OR . IA + IC - IB . LE . 0 + . OR . IB + IC - IA . LE . 0 ) THEN WRITE ( * , * ) 'La suma de dos lados debe ser mayor que el tercer lado.' STOP 1 END IF C C USANDO LA FÓRMULA DE HERON CALCULAMOS EL ÁREA C DEL TRIÁNGULO S = ( IA + IB + IC ) / 2.0 ÁREA = SQRT ( S * ( S - IA ) * ( S - IB ) * ( S - IC )) WRITE ( * , 601 ) IA , IB , IC , ÁREA  601 FORMATO ( 'A= ' , I5 , ' B= ' , I5 ,                                                                                                     ' C= ' , I5 , ' AREA= ' , F10 . 2 , + ' unidades cuadradas' ) DETENER FIN         

Transición al estándar ANSI Fortran

El desarrollo de un estándar revisado que sucediera a FORTRAN 77 se vería retrasado repetidamente, ya que el proceso de estandarización luchaba por mantenerse al día con los rápidos cambios en las prácticas informáticas y de programación. Mientras tanto, como el "estándar FORTRAN" durante casi quince años, FORTRAN 77 se convertiría en el dialecto históricamente más importante.

Una extensión práctica importante de FORTRAN 77 fue el lanzamiento de MIL-STD-1753 en 1978. [37] Esta especificación, desarrollada por el Departamento de Defensa de los EE. UU ., estandarizó una serie de características implementadas por la mayoría de los compiladores FORTRAN 77 pero no incluidas en el estándar ANSI FORTRAN 77. Estas características eventualmente se incorporarían al estándar Fortran 90.

El estándar IEEE 1003.9 POSIX , publicado en 1991, proporcionó un medio simple para que los programadores de FORTRAN 77 emitieran llamadas al sistema POSIX. [38] Se definieron más de 100 llamadas en el documento, lo que permitió el acceso al control de procesos compatible con POSIX, manejo de señales, control del sistema de archivos, control de dispositivos, apuntamiento de procedimientos y E/S de flujo de manera portátil.

Fortran 90

El muy retrasado sucesor de FORTRAN 77, conocido informalmente como Fortran 90 (y antes de eso, Fortran 8X ), finalmente se lanzó como estándar ISO/IEC 1539:1991 en 1991 y como estándar ANSI en 1992. Además de cambiar la ortografía oficial de FORTRAN a Fortran, esta importante revisión agregó muchas características nuevas para reflejar los cambios significativos en la práctica de programación que se habían desarrollado desde el estándar de 1978:

Obsolescencia y eliminaciones

A diferencia de la revisión anterior, Fortran 90 no eliminó ninguna característica. [39] Cualquier programa FORTRAN 77 que cumpliera con el estándar también lo cumplía con Fortran 90, y cualquiera de los estándares debería haber sido utilizable para definir su comportamiento.

Se identificó un pequeño conjunto de características como "obsoletas" y se esperaba que se eliminaran en un estándar futuro. Todas las funcionalidades de estas características de la versión anterior se pueden realizar con características más nuevas de Fortran. Algunas se conservan para simplificar la migración de programas antiguos, pero muchas se eliminaron en Fortran 95.

Ejemplo de "¡Hola, mundo!"

programa holamundo print * , "¡Hola, mundo!" fin programa holamundo   

Fortran 95

Fortran 95 , publicado oficialmente como ISO/IEC 1539-1:1997, fue una revisión menor, principalmente para resolver algunos problemas pendientes del estándar Fortran 90. No obstante, Fortran 95 también agregó una serie de extensiones, en particular de la especificación Fortran de alto rendimiento :

Se ampliaron varias funciones intrínsecas (por ejemplo, dimse agregó un argumento a la maxlocintrínseca).

Varias características que en Fortran 90 se consideraban "obsoletas" se eliminaron de Fortran 95:

Un complemento importante de Fortran 95 fue el informe técnico ISO TR-15581: Enhanced Data Type Facilities , conocido informalmente como Allocatable TR. Esta especificación definió el uso mejorado de ALLOCATABLEmatrices, antes de la disponibilidad de compiladores de Fortran totalmente compatibles con Fortran 2003. Dichos usos incluyen ALLOCATABLEmatrices como componentes de tipo derivados, en listas de argumentos ficticios de procedimientos y como valores de retorno de funciones. ( ALLOCATABLELas matrices son preferibles a POINTERlas matrices basadas en - porque ALLOCATABLEFortran 95 garantiza que las matrices se desasignarán automáticamente cuando salgan del ámbito, lo que elimina la posibilidad de fuga de memoria . Además, los elementos de las matrices asignables son contiguos y el alias no es un problema para la optimización de las referencias de matriz, lo que permite a los compiladores generar código más rápido que en el caso de los punteros. [40] )

Otro complemento importante de Fortran 95 fue el informe técnico ISO TR-15580: Floating-point exception management (Manejo de excepciones de punto flotante ), conocido informalmente como IEEE TR. Esta especificación definió el soporte para la aritmética de punto flotante IEEE y el manejo de excepciones de punto flotante .

Compilación condicional y cadenas de longitud variable

Además del "lenguaje base" obligatorio (definido en ISO/IEC 1539-1: 1997), el lenguaje Fortran 95 también incluía dos módulos opcionales:

que, en conjunto, componen la Norma Internacional de varias partes (ISO/IEC 1539).

Según los desarrolladores de estándares, "las partes opcionales describen características independientes que han sido solicitadas por un grupo sustancial de usuarios y/o implementadores, pero que no se consideran de suficiente generalidad como para que sean requeridas en todos los compiladores Fortran que cumplen con el estándar". No obstante, si un Fortran que cumple con el estándar proporciona dichas opciones, entonces "deben proporcionarse de acuerdo con la descripción de esas funciones en la Parte apropiada del Estándar".

Fortran moderno

El lenguaje definido por los estándares del siglo XXI, en particular debido a su incorporación de soporte de programación orientada a objetos y posteriormente Coarray Fortran , a menudo se denomina "Fortran moderno", y el término se utiliza cada vez más en la literatura. [41]

Fortran 2003

Fortran 2003, publicado oficialmente como ISO/IEC 1539-1:2004, fue una revisión importante que introdujo muchas características nuevas. [42] Un resumen completo de las nuevas características de Fortran 2003 está disponible en el sitio web oficial del Grupo de Trabajo de Fortran ( ISO/IEC JTC1/SC22 /WG5). [43]

De ese artículo se desprende que las principales mejoras de esta revisión incluyen:

Un complemento importante de Fortran 2003 fue el informe técnico ISO TR-19767: Enhanced module features in Fortran (Facilidades de módulos mejoradas en Fortran). Este informe proporcionaba submódulos que hacían que los módulos de Fortran fueran más similares a los módulos de Modula-2 . Son similares a las subunidades secundarias privadas de Ada . Esto permite que la especificación e implementación de un módulo se exprese en unidades de programa separadas, lo que mejora el empaquetado de bibliotecas grandes, permite la preservación de secretos comerciales mientras se publican interfaces definitivas y evita las cascadas de compilación.

Fortran 2008

La norma ISO/IEC 1539-1:2010, conocida informalmente como Fortran 2008, se aprobó en septiembre de 2010. [44] [45] Al igual que Fortran 95, se trata de una actualización menor que incorpora aclaraciones y correcciones a Fortran 2003, además de introducir algunas nuevas capacidades. Las nuevas capacidades incluyen:

El Borrador Final de la Norma Internacional (FDIS) está disponible como documento N1830. [46]

Un complemento de Fortran 2008 es la Especificación técnica (TS) 29113 de la Organización Internacional de Normalización (ISO) sobre mayor interoperabilidad de Fortran con C , [47] [48] que se envió a ISO en mayo de 2012 para su aprobación. La especificación agrega soporte para acceder al descriptor de matriz desde C y permite ignorar el tipo y rango de los argumentos.

Fortran 2018

La revisión Fortran 2018 del lenguaje se conocía anteriormente como Fortran 2015. [49] Fue una revisión importante y se publicó el 28 de noviembre de 2018. [50]

Fortran 2018 incorpora dos especificaciones técnicas publicadas previamente:

Los cambios adicionales y las nuevas características incluyen compatibilidad con ISO/IEC/IEEE 60559:2011 (la versión del estándar de punto flotante IEEE anterior a la última revisión menor IEEE 754–2019), entrada/salida hexadecimal, mejoras en IMPLICIT NONE y otros cambios. [53] [54] [55] [56]

Fortran 2018 eliminó la declaración aritmética IF. También eliminó las construcciones DO que no son de bloques (bucles que no terminan con una declaración END DO o CONTINUE). Estas habían sido una parte obsoleta del lenguaje desde Fortran 90.

Las nuevas obsolescencias son: las declaraciones COMUNES y EQUIVALENCIA y la unidad de programa DATOS BLOQUE, los bucles DO etiquetados, los nombres específicos para funciones intrínsecas y la declaración y construcción FORALL.

Fortran 2023

Fortran 2023 (ISO/IEC 1539-1:2023) se publicó en noviembre de 2023 y se puede comprar en la ISO. [57] Fortran 2023 es una extensión menor de Fortran 2018 que se centra en corregir errores y omisiones en Fortran 2018. También agrega algunas características pequeñas, incluida una capacidad de tipo enumerado .

Características del lenguaje

En el artículo relacionado, Características del lenguaje Fortran 95 , se incluye una descripción completa de las características del lenguaje Fortran que trae Fortran 95. Las versiones del lenguaje definidas por estándares posteriores suelen denominarse colectivamente "Fortran moderno" y se describen en la literatura.

Ciencia e ingeniería

Simulación magnetohidrodinámica relativista general en Fortran de la acreción de agujeros negros utilizando el código BHAC con malla adaptativa cartesiana
Flujo alrededor de un cilindro calculado en Fortran con OpenCL (Universidad de Bristol, Reino Unido)
Velocidad y temperatura superficial del mar en los océanos, calculadas con el código NEMO Fortran (Nucleus for European Modeling of the Ocean, https://www.nemo-ocean.eu) en el Barcelona Supercomputing Center (2020)

Aunque un artículo de revista de 1968 escrito por los autores de BASIC ya describía a FORTRAN como "anticuado", [58] se han escrito programas en Fortran durante muchas décadas y existe una gran cantidad de software Fortran en uso diario en las comunidades científicas y de ingeniería. [59] Jay Pasachoff escribió en 1984 que "los estudiantes de física y astronomía simplemente tienen que aprender FORTRAN. Existe tanto en FORTRAN que parece poco probable que los científicos cambien a Pascal , Modula-2 o lo que sea". [60] En 1993, Cecil E. Leith llamó a FORTRAN la "lengua materna de la computación científica", agregando que su reemplazo por cualquier otro lenguaje posible "puede seguir siendo una esperanza perdida". [61]

Es el lenguaje principal para algunas de las tareas de supercomputación más intensivas , como en astronomía , modelado climático , química computacional, economía computacional , dinámica de fluidos computacional , física computacional , análisis de datos, [62] modelado hidrológico , álgebra lineal numérica y bibliotecas numéricas ( LAPACK , IMSL y NAG ), optimización , simulación satelital, ingeniería estructural y predicción meteorológica . [63] Muchos de los puntos de referencia de punto flotante para medir el rendimiento de los nuevos procesadores de computadora, como los componentes de punto flotante de los puntos de referencia SPEC (por ejemplo, CFP2006, CFP2017) están escritos en Fortran. Los algoritmos matemáticos están bien documentados en Numerical Recipes .

Aparte de esto, los códigos más modernos en la ciencia computacional generalmente utilizan grandes bibliotecas de programas, como METIS para la partición de gráficos, PETSc o Trilinos para capacidades de álgebra lineal, deal.II o FEniCS para soporte de malla y elementos finitos, y otras bibliotecas genéricas. Desde principios de la década de 2000, muchas de las bibliotecas de soporte ampliamente utilizadas también se han implementado en C y, más recientemente, en C++ . Por otro lado, los lenguajes de alto nivel como Wolfram Language , MATLAB , Python y R se han vuelto populares en áreas particulares de la ciencia computacional. En consecuencia, una fracción creciente de programas científicos también se escriben en dichos lenguajes de script de alto nivel. Por esta razón, se agregaron facilidades para la interoperación con C a Fortran 2003 y se mejoraron con la especificación técnica ISO/IEC 29113, que se incorporó a Fortran 2018 para permitir una interoperación más flexible con otros lenguajes de programación.

Portabilidad

La portabilidad fue un problema en los primeros tiempos porque no había un estándar acordado, ni siquiera el manual de referencia de IBM, y las empresas de ordenadores competían por diferenciar sus ofertas de las de los demás proporcionando características incompatibles. Los estándares han mejorado la portabilidad. El estándar de 1966 proporcionó una sintaxis y una semántica de referencia, pero los proveedores siguieron proporcionando extensiones incompatibles. Aunque los programadores cuidadosos se estaban dando cuenta de que el uso de extensiones incompatibles causaba costosos problemas de portabilidad y, por tanto, utilizaban programas como The PFORT Verifier, [64] [65] no fue hasta después del estándar de 1977, cuando la Oficina Nacional de Normas (ahora NIST ) publicó FIPS PUB 69 , que los procesadores comprados por el gobierno de los EE. UU. tuvieron que diagnosticar extensiones del estándar. En lugar de ofrecer dos procesadores, esencialmente todos los compiladores acabaron teniendo al menos una opción para diagnosticar extensiones. [66] [67]

Las extensiones incompatibles no fueron el único problema de portabilidad. Para los cálculos numéricos, es importante tener en cuenta las características de la aritmética. Esto fue abordado por Fox et al. en el contexto del estándar de 1966 de la biblioteca PORT . [65] Las ideas contenidas en este documento se utilizaron ampliamente y finalmente se incorporaron al estándar de 1990 mediante funciones de consulta intrínsecas. La adopción generalizada (ahora casi universal) del estándar IEEE 754 para la aritmética binaria de punto flotante ha eliminado esencialmente este problema.

El acceso al entorno informático (por ejemplo, la línea de comandos del programa, las variables de entorno, la explicación textual de las condiciones de error) siguió siendo un problema hasta que fue abordado por el estándar de 2003.

Grandes colecciones de software de biblioteca que podrían describirse como vagamente relacionadas con la ingeniería y los cálculos científicos, como las bibliotecas de gráficos, se han escrito en C y, por lo tanto, el acceso a ellas presentaba un problema de portabilidad. Esto se ha solucionado mediante la incorporación de la interoperabilidad de C en el estándar de 2003.

Ahora es posible (y relativamente fácil) escribir un programa totalmente portable en Fortran, incluso sin recurrir a un preprocesador .

Variantes obsoletas

Hasta que se desarrolló el estándar Fortran 66, cada compilador admitía su propia variante de Fortran. Algunas se alejaban más de la corriente principal que otras.

El primer compilador Fortran estableció un alto estándar de eficiencia para el código compilado. Este objetivo dificultó la creación de un compilador, por lo que generalmente los fabricantes de computadoras lo hacían para respaldar las ventas de hardware. Esto dejó un nicho importante: compiladores que fueran rápidos y proporcionaran buenos diagnósticos para el programador (a menudo un estudiante). Algunos ejemplos son Watfor, Watfiv, PUFFT y, en menor escala, FORGO, Wits Fortran y Kingston Fortran 2.

Fortran 5 fue comercializado por Data General Corp desde principios de los años 1970 hasta principios de los años 1980, para las líneas de computadoras Nova , Eclipse y MV . Tenía un compilador optimizador que era bastante bueno para las minicomputadoras de su época. El lenguaje se asemeja más a FORTRAN 66.

FORTRAN V fue distribuido por Control Data Corporation en 1968 para la serie CDC 6600. El lenguaje se basaba en FORTRAN IV. [68]

Univac también ofreció un compilador para la serie 1100 conocido como FORTRAN V. Un derivado de Univac Fortran V fue Athena FORTRAN.

Las variantes específicas producidas por los proveedores de computadoras científicas de alto rendimiento (por ejemplo, Burroughs , Control Data Corporation (CDC), Cray , Honeywell , IBM , Texas Instruments y UNIVAC ) agregaron extensiones a Fortran para aprovechar las características especiales del hardware, como la caché de instrucciones , las canalizaciones de CPU y las matrices vectoriales. Por ejemplo, uno de los compiladores FORTRAN de IBM ( H Extended IUP ) tenía un nivel de optimización que reordenaba las instrucciones del código de máquina para mantener ocupadas simultáneamente varias unidades aritméticas internas. Otro ejemplo es CFD , una variante especial de FORTRAN diseñada específicamente para la supercomputadora ILLIAC IV , que se ejecuta en el Centro de Investigación Ames de la NASA . IBM Research Labs también desarrolló un lenguaje extendido basado en FORTRAN llamado VECTRAN para procesar vectores y matrices.

Fortran orientado a objetos era una extensión orientada a objetos de Fortran, en la que los elementos de datos se pueden agrupar en objetos, que se pueden instanciar y ejecutar en paralelo. Estaba disponible para Sun, Iris, iPSC y nCUBE, pero ya no se admite.

Estas extensiones específicas de cada máquina han desaparecido con el tiempo o se han incorporado elementos a los estándares principales. La principal extensión que queda es OpenMP , que es una extensión multiplataforma para la programación en memoria compartida. Una nueva extensión, Coarray Fortran, está destinada a admitir la programación paralela.

FOR TRANSIT era el nombre de una versión reducida del lenguaje FORTRAN del IBM 704, que se implementó para el IBM 650, utilizando un programa traductor desarrollado en Carnegie a fines de la década de 1950. [69] El siguiente comentario aparece en el Manual de referencia de IBM ( Sistema de codificación automática FOR TRANSIT C28-4038, Copyright 1957, 1959 de IBM):

El sistema FORTRAN fue diseñado para una máquina más compleja que la 650 y, en consecuencia, algunas de las 32 instrucciones que se encuentran en el Manual de referencia del programador de FORTRAN no son aceptables para el sistema FOR TRANSIT. Además, se han agregado ciertas restricciones al lenguaje FORTRAN. Sin embargo, ninguna de estas restricciones hace que un programa fuente escrito para FOR TRANSIT sea incompatible con el sistema FORTRAN para el 704.

Las declaraciones permitidas fueron:

Se pueden utilizar hasta diez subrutinas en un programa.

Las instrucciones FOR TRANSIT se limitaban únicamente a las columnas 7 a 56. Se utilizaban tarjetas perforadas para la entrada y salida en el IBM 650. Se necesitaban tres pasadas para traducir el código fuente al lenguaje "IT", luego compilar las instrucciones IT en lenguaje ensamblador SOAP y, finalmente, producir el programa objeto, que luego se podía cargar en la máquina para ejecutar el programa (utilizando tarjetas perforadas para la entrada de datos y la salida de los resultados en tarjetas perforadas).

Existieron dos versiones para los años 650 con un tambor de memoria de 2000 palabras: FOR TRANSIT I (S) y FOR TRANSIT II, ​​esta última para máquinas equipadas con registros de indexación y aritmética decimal de punto flotante ( biquinaria ) automática. El Apéndice A del manual incluía diagramas de cableado para el panel de control del lector/perforador de tarjetas IBM 533 .

Lenguajes basados ​​en Fortran

Antes de FORTRAN 77, se utilizaban comúnmente muchos preprocesadores para proporcionar un lenguaje más amigable, con la ventaja de que el código preprocesado podía compilarse en cualquier máquina con un compilador FORTRAN estándar. [70] Estos preprocesadores normalmente soportarían programación estructurada , nombres de variables de más de seis caracteres, tipos de datos adicionales, compilación condicional e incluso capacidades de macro . Los preprocesadores populares incluían EFL , FLECS, iftran , MORTRAN , SFtran, S-Fortran, Ratfor y Ratfiv . EFL, Ratfor y Ratfiv, por ejemplo, implementaron lenguajes similares a C , generando código preprocesado en FORTRAN 66 estándar. El preprocesador PFORT se usaba a menudo para verificar que el código se ajustara a un subconjunto portable del lenguaje. A pesar de los avances en el lenguaje Fortran, los preprocesadores continúan utilizándose para la compilación condicional y la sustitución de macros.

One of the earliest versions of FORTRAN, introduced in the '60s, was popularly used in colleges and universities. Developed, supported, and distributed by the University of Waterloo, WATFOR was based largely on FORTRAN IV. A student using WATFOR could submit their batch FORTRAN job and, if there were no syntax errors, the program would move straight to execution. This simplification allowed students to concentrate on their program's syntax and semantics, or execution logic flow, rather than dealing with submission Job Control Language (JCL), the compile/link-edit/execution successive process(es), or other complexities of the mainframe/minicomputer environment. A down side to this simplified environment was that WATFOR was not a good choice for programmers needing the expanded abilities of their host processor(s), e.g., WATFOR typically had very limited access to I/O devices. WATFOR was succeeded by WATFIV and its later versions.

program; s=0 i=1,n; s=s+1; stop i; s='s' Stop

(line programming)

LRLTRAN was developed at the Lawrence Radiation Laboratory to provide support for vector arithmetic and dynamic storage, among other extensions to support systems programming. The distribution included the Livermore Time Sharing System (LTSS) operating system.

The Fortran-95 Standard includes an optional Part 3 which defines an optional conditional compilation capability. This capability is often referred to as "CoCo".

Many Fortran compilers have integrated subsets of the C preprocessor into their systems.

SIMSCRIPT is an application specific Fortran preprocessor for modeling and simulating large discrete systems.

The F programming language was designed to be a clean subset of Fortran 95 that attempted to remove the redundant, unstructured, and deprecated features of Fortran, such as the EQUIVALENCE statement. F retains the array features added in Fortran 90, and removes control statements that were made obsolete by structured programming constructs added to both FORTRAN 77 and Fortran 90. F is described by its creators as "a compiled, structured, array programming language especially well suited to education and scientific computing".[71] Essential Lahey Fortran 90 (ELF90) was a similar subset.

Lahey and Fujitsu teamed up to create Fortran for the Microsoft .NET Framework.[72] Silverfrost FTN95 is also capable of creating .NET code.[73]

Code examples

The following program illustrates dynamic memory allocation and array-based operations, two features introduced with Fortran 90. Particularly noteworthy is the absence of DO loops and IF/THEN statements in manipulating the array; mathematical operations are applied to the array as a whole. Also apparent is the use of descriptive variable names and general code formatting that conform with contemporary programming style. This example computes an average over data entered interactively.

program average ! Read in some numbers and take the average ! As written, if there are no data points, an average of zero is returned ! While this may not be desired behavior, it keeps this example simple implicit none real, allocatable :: points(:) integer :: number_of_points real :: average_points, positive_average, negative_average average_points = 0. positive_average = 0. negative_average = 0. write (*,*) "Input number of points to average:" read (*,*) number_of_points allocate (points(number_of_points)) write (*,*) "Enter the points to average:" read (*,*) points ! Take the average by summing points and dividing by number_of_points if (number_of_points > 0) average_points = sum(points) / number_of_points ! Now form average over positive and negative points only if (count(points > 0.) > 0) positive_average = sum(points, points > 0.) / count(points > 0.) if (count(points < 0.) > 0) negative_average = sum(points, points < 0.) / count(points < 0.) ! Print result to terminal stdout unit 6 write (*,'(a,g12.4)') 'Average = ', average_points write (*,'(a,g12.4)') 'Average of positive points = ', positive_average write (*,'(a,g12.4)') 'Average of negative points = ', negative_average deallocate (points) ! free memoryend program average

Humor

During the same FORTRAN standards committee meeting at which the name "FORTRAN 77" was chosen, a satirical technical proposal was incorporated into the official distribution bearing the title "Letter O Considered Harmful". This proposal purported to address the confusion that sometimes arises between the letter "O" and the numeral zero, by eliminating the letter from allowable variable names. However, the method proposed was to eliminate the letter from the character set entirely (thereby retaining 48 as the number of lexical characters, which the colon had increased to 49). This was considered beneficial in that it would promote structured programming, by making it impossible to use the notorious GO TO statement as before. (Troublesome FORMAT statements would also be eliminated.) It was noted that this "might invalidate some existing programs" but that most of these "probably were non-conforming, anyway".[74][unreliable source?][75]

When X3J3 debated whether the minimum trip count for a DO loop should be zero or one in Fortran 77, Loren Meissner suggested a minimum trip count of two—reasoning (tongue-in-cheek) that if it were less than two, then there would be no reason for a loop.

When assumed-length arrays were being added, there was a dispute as to the appropriate character to separate upper and lower bounds. In a comment examining these arguments, Walt Brainerd penned an article entitled "Astronomy vs. Gastroenterology" because some proponents had suggested using the star or asterisk ("*"), while others favored the colon (":").[citation needed]

Variable names beginning with the letters I–N have a default type of integer, while variables starting with any other letters defaulted to real, although programmers could override the defaults with an explicit declaration.[76] This led to the joke: "In FORTRAN, GOD is REAL (unless declared INTEGER)."

See also

References

  1. ^ "Chapel spec (Acknowledgements)" (PDF). Cray Inc. October 1, 2015. Archived (PDF) from the original on February 5, 2016. Retrieved January 14, 2016.
  2. ^ Report of a Visit to Discuss Common Programming Languages in Czechoslowakia and Poland, 1963, John A. Gosden (Editor), Roger E. Gay, John L. Jones, Jack N. Merner, Christopher J. Shaw
  3. ^ John Backus. "The history of FORTRAN I, II and III" (PDF). Softwarepreservation.org. Archived (PDF) from the original on July 26, 2007. Retrieved November 19, 2014.
  4. ^ Wilson, Leslie B. (2001). Comparative Programming Languages, Third Edition. Addison-Wesley. p. 16. ISBN 0-201-71012-9. The manual for Fortran I was released in 1956, but it was 1958 before successful compilers were running programs correctly.
  5. ^ Loh, Eugene (June 18, 2010). "The Ideal HPC Programming Language". ACM Queue. 8 (6): 30–38. doi:10.1145/1810226.1820518.
  6. ^ "HPL – A Portable Implementation of the High-Performance Linpack Benchmark for Distributed-Memory Computers". Retrieved February 21, 2015.
  7. ^ "Q13. What are the benchmarks?". Overview – CPU 2017. SPEC. Retrieved November 13, 2019.
  8. ^ Wilson, Leslie B. (2001). Comparative Programming Languages, Third Edition. Addison-Wesley. p. 18. ISBN 0-201-71012-9. Another problem was that there was no standard for Fortran and so slightly different versions ... would likely fail when used with a different compiler.
  9. ^ TIOBE Software BV (May 2024). "TIOBE Index". TIOBE.com. TIOBE. Retrieved May 6, 2024.
  10. ^ a b c d e Backus, John Warner; Beeber, R. J.; Best, Sheldon F.; Goldberg, Richard; Herrick, Harlan L.; Hughes, R. A.; Mitchell, L. B.; Nelson, Robert A.; Nutt, Roy; Sayre, David; Sheridan, Peter B.; Stern, Harold; Ziller, Irving (October 15, 1956). Sayre, David (ed.). The FORTRAN Automatic Coding System for the IBM 704 EDPM: Programmer's Reference Manual (PDF). New York, USA: Applied Science Division and Programming Research Department, International Business Machines Corporation. pp. 2, 19–20. Archived (PDF) from the original on July 4, 2022. Retrieved July 4, 2022. (2+51+1 pages)
  11. ^ a b c d e f Backus, John (October–December 1998). "The History of Fortran I, II, and III" (PDF). IEEE Annals of the History of Computing. 20 (4): 68–78. doi:10.1109/85.728232. Archived (PDF) from the original on March 3, 2016. Retrieved June 17, 2020. [1][2]
  12. ^ "FORTRAN: The Pioneering Programming Language". IBM. March 7, 2012. Retrieved July 19, 2017.
  13. ^ "FORTRAN". Encyclopedia Britannica. June 14, 2021. Retrieved July 19, 2021.
  14. ^ Chapman, Stephen J. (2018). Fortran for Scientists and Engineers (Fourth ed.). New York: McGraw-Hill Education. p. 13. ISBN 978-0-07-338589-1.
  15. ^ The "Fortran character set" defined by the FORTRAN 77 standard was the minimal character set that standard-compliant compilers were required to support; in practice, many FORTRAN 77 compilers supported the full ASCII character set.
  16. ^ a b J. W. Backus; R. J. Beeber; S. Best; R. Goldberg; L. M. Haibt; H. L. Herrick; R. A. Nelson; D. Sayre; P. B. Sheridan; H. Stern; L. Ziller; R. A. Hughes; R. Nutt (February 1957). The FORTRAN Automatic Coding System (PDF). Western Joint Computer Conference. pp. 188–198. doi:10.1145/1455567.1455599.
  17. ^ Mindell, David (2008). Digital Apollo. Cambridge, MA: MIT Press. p. 99. ISBN 978-0-262-13497-2. JSTOR j.ctt5hhn02. OCLC 228031739.
  18. ^ Padua, David (January–February 2000). "The Fortran I Compiler" (PDF). Computing in Science & Engineering. 2 (1): 70–75. Bibcode:2000CSE.....2a..70P. doi:10.1109/5992.814661. Archived from the original (PDF) on June 17, 2020. The Fortran I compiler was the first major project in code optimization. It tackled problems of crucial importance whose general solution was an important research focus in compiler technology for several decades. Many classical techniques for compiler analysis and optimization can trace their origins and inspiration to the Fortran I compiler.
  19. ^ Brian Bergstein (May 20, 2007). "Fortran creator John Backus dies". MSNBC. Retrieved October 29, 2018.
  20. ^ "FORTRAN – The First Programming Language for Numeric Calculations". SciHi Blog. October 15, 2019.
  21. ^ Haines, L. H. (1965). "Serial compilation and the 1401 FORTRAN compiler". IBM Systems Journal. 4 (1): 73–80. doi:10.1147/sj.41.0073.
  22. ^ Lee, John A. N. (1967). Anatomy of a Compiler. Van Nostrand Reinhold.
  23. ^ Fortran Specifications and Operating Procedures, IBM 1401 (PDF). IBM. C24-1455-2. Archived (PDF) from the original on September 23, 2017.
  24. ^ "Subject: GOTRAN ON THE IBM 1316 DISK STORAGE PACK (Serial No. K7402)". Archived from the original on February 21, 2006. Retrieved March 3, 2006.
  25. ^ The FORTRAN Automatic Coding System for the IBM 704 EDPM : Preliminary Operator's Manual (PDF). Programming Research Department, International Business Machines Corporation. April 8, 1957. pp. 6–37. Archived (PDF) from the original on February 26, 2014.
  26. ^ Armstead, Betty Jo (January 21, 2015). "My Years at NASA" (PDF). Denver Museum of Nature & Science. Archived from the original (PDF) on December 24, 2019. Retrieved June 15, 2019.
  27. ^ Reference Manual, IBM 7090 Data Processing System (PDF). 1961. A22-6528-3. Archived (PDF) from the original on December 1, 2008.
  28. ^ Fortran II General Information Manual (PDF). 1963. Archived (PDF) from the original on April 26, 2005. Retrieved November 19, 2014.
  29. ^ Reference Manual, FORTRAN II for the IBM 704 Data Processing System (PDF). 1958. C28-6000-2. Archived (PDF) from the original on October 30, 2005.
  30. ^ "Ibibilio.org". Ibiblio.org. Retrieved September 15, 2014.
  31. ^ Fortran IV Language Specifications, Program Specifications, and Operating Procedures, IBM 1401, 1440, and 1460 (PDF). IBM. April 1966. C24-3322-2. Archived (PDF) from the original on September 23, 2017.
  32. ^ McCracken, Daniel D. (1965). "Preface". A Guide to FORTRAN IV Programming. New York: Wiley. p. v. ISBN 978-0-471-58281-6.
  33. ^ "List of FORTRAN Implementations 1957 – 1967". BCS Fortran Specialist Group. IEEE Annals. 2017. Retrieved October 17, 2017.
  34. ^ IBM System/360 Model 50 Functional Characteristics (PDF). IBM. 1967. A22-6898-1. Archived (PDF) from the original on October 29, 2021 – via bitsavers.
  35. ^ a b "DECSYSTEM-10 FORTRAN IV (F40) Programmers Reference Manual" (PDF). Github. Digital Equipment Corporation. Retrieved April 15, 2022.
  36. ^ a b "FORTRAN IV". WorldCat.org. Retrieved December 10, 2023.
  37. ^ MIL-STD 1753 - FORTRAN, DoD Supplement To American National Standard X3.9-1978. United States Government Printing Office. November 9, 1978. Retrieved April 21, 2024.
  38. ^ IEEE 1003.9-1992 – IEEE Standard for InformationTechnology – POSIX(R) FORTRAN 77 Language Interfaces – Part 1: Binding for System Application Program Interface (API). IEEE. Retrieved November 24, 2018.
  39. ^ Appendix B.1
  40. ^ "Fortran 95 Reference". Gnu.Org. Retrieved May 10, 2014.
  41. ^ Lionel, Steve (December 30, 2013). "Doctor Fortran in "It's a Modern Fortran World"". Intel (was DEC) Fortran forum discussion group. Intel. Retrieved April 11, 2022.
  42. ^ "Fortran 2003– Last Working Draft". Gnu.Org. Retrieved May 10, 2014.
  43. ^ "WG5 Completes Processing Fortran 2003 and the TR". nag.co.uk. May 14, 2004. Archived from the original on August 5, 2004. Retrieved April 3, 2023.. It may also be downloaded as a PDF file at "The New Features of Fortran 2003" (PDF). Archived (PDF) from the original on January 15, 2018. Retrieved April 3, 2023.
  44. ^ "N1836, Summary of Voting/Table of Replies on ISO/IEC FDIS 1539-1, Information technology – Programming languages – Fortran – Part 1: Base language" (PDF). Archived (PDF) from the original on January 15, 2018.
  45. ^ "Fortran 2008 – Last Working Draft" (PDF). Gnu.Org. Archived (PDF) from the original on May 12, 2014. Retrieved May 10, 2014.
  46. ^ N1830, Information technology – Programming languages – Fortran – Part 1: Base language [3][dead link]
  47. ^ ISO/IEC TS 29113:2012 – Information technology – Further interoperability of Fortran with C.
  48. ^ "Draft of the Technical Specification (TS) 29113" (PDF). wg5-fortran.org. Archived (PDF) from the original on January 15, 2018.
  49. ^ "Doctor Fortran in "Eighteen is the new Fifteen"". Software.intel.com. Retrieved November 20, 2017.
  50. ^ "Fortran 2018". ISO. Retrieved November 30, 2018.
  51. ^ "Further Interoperability with C" (PDF). ISO. Archived (PDF) from the original on December 1, 2017. Retrieved November 20, 2017.
  52. ^ "Additional Parallel Features in Fortran". ISO. Retrieved November 20, 2017.
  53. ^ "The New Features of Fortran 2015". ISO. Retrieved June 23, 2017.
  54. ^ "Doctor Fortran in "One Door Closes"". Software.intel.com. Retrieved September 21, 2015.
  55. ^ "Doctor Fortran Goes Dutch: Fortran 2015". Software.intel.com. Retrieved November 19, 2014.
  56. ^ Fortran 2018 Interpretation Document (PDF). October 9, 2018.
  57. ^ "Fortran 2023". wg5-fortran.org. Retrieved November 30, 2023.
  58. ^ Kemeny, John G.; Kurtz, Thomas E. (October 11, 1968). "Dartmouth Time-Sharing". Science. 162 (3850): 223–228. Bibcode:1968Sci...162..223K. doi:10.1126/science.162.3850.223. PMID 5675464.
  59. ^ Phillips, Lee (May 8, 2014). "Scientific computing's future: Can any coding language top a 1950s behemoth?". Ars Technica. Retrieved May 8, 2014.
  60. ^ Pasachoff, Jay M. (April 1984). "Scientists: FORTRAN vs. Modula-2". BYTE (letter). p. 404. Retrieved February 6, 2015.
  61. ^ Galperin, Boris (1993). "26". Large Eddy Simulation of Complex Engineering and Geophysical Flows. London: Cambridgey. p. 573. ISBN 978-0-521-43009-8.
  62. ^ Brandt, Siegmund (1970). Statistical and Computational Methods in Data Analysis. North-Holland Publishing Company. pp. Preface. ISBN 0-7204-2033-4.
  63. ^ Curcic, Milan (November 24, 2020). Modern Fortran: Building efficient parallel applications. Simon and Schuster. ISBN 978-1-61729-528-7.
  64. ^ Gaffney, P W; Wooten, J W (May 1, 1980). Methods to ensure the standardization of FORTRAN software (Report). Oak Ridge National Laboratory. OSTI 5361454. PFORT ... Library ...
  65. ^ a b P. A. Fox (1977). "Port — A portable mathematical subroutine library". A portable mathematical subroutine library. Lecture Notes in Computer Science. Vol. 57. pp. 165–177. doi:10.1007/3-540-08446-0_42. ISBN 978-3-540-08446-4. PORT ... written in (PFORT) .. ANS Fortran
  66. ^ Whitten, Douglas E.; Demaine, Paul A. D. (1975). "A machine and configuration independent Fortran: Portable Fortran {PFortran}". IEEE Transactions on Software Engineering. SE-1 (1). Institute of Electrical and Electronics Engineers (IEEE): 111–124. doi:10.1109/tse.1975.6312825. ISSN 0098-5589. S2CID 16485156.
  67. ^ "Portability Issues". .. discusses .. portability of .. Fortran
  68. ^ Healy, MJR (1968). "Towards FORTRAN VI". Advanced scientific Fortran by CDC. CDC. pp. 169–172. Archived from the original on July 5, 2009. Retrieved April 10, 2009.
  69. ^ Perlis, A. J.; Smith, J. W.; Van Zoeren, H. R. Internal Translator (IT) A Compiler for the IBM 650 (PDF). Computation Center, Carnegie Institute of Technology. Archived (PDF) from the original on October 2, 2012.
  70. ^ Meissner, Loren (September 1, 1975). "On extending Fortran control structures to facilitate structured programming". ACM SIGPLAN Notices. acm.org.
  71. ^ "F Programming Language Homepage". Fortran.com. Archived from the original on January 9, 2015. Retrieved November 19, 2014.
  72. ^ "Fortran for .NET Language System". Archived from the original on October 18, 2014.
  73. ^ "FTN95: Fortran 95 for Windows". Silverfrost.com. Retrieved November 19, 2014.
  74. ^ X3J3 post-meeting distribution for meeting held at Brookhaven National Laboratory in November 1976.
  75. ^ "The obliteration of O". Computer Weekly. March 3, 1977.
  76. ^ Rules for Data Typing (FORTRAN 77 Language Reference). Retrieved September 29, 2016.

Further reading

Language standards
Related standards
Other reference material
Books
Articles

External links