En economía, el conjunto de producción es un constructo que representa las posibles entradas y salidas de un proceso de producción .
Un vector de producción representa un proceso como un vector que contiene una entrada para cada producto de la economía. Los productos se representan mediante entradas positivas que indican las cantidades producidas y los insumos mediante entradas negativas que indican las cantidades consumidas.
Si las mercancías de la economía son ( trabajo , maíz , harina , pan ) y un molino utiliza una unidad de trabajo para producir 8 unidades de harina a partir de 10 unidades de maíz, entonces su vector de producción es (–1,–10,8,0). Si necesita la misma cantidad de trabajo para funcionar a la mitad de su capacidad, entonces el vector de producción (–1,–5,4,0) también sería operacionalmente posible. El conjunto de todos los vectores de producción operacionalmente posibles es el conjunto de producción del molino.
Si y es un vector de producción y p es el vector de precios de la economía, entonces p · y es el valor de la producción neta. El propietario de la fábrica normalmente elegirá y del conjunto de producción para maximizar esta cantidad. p · y se define como la "ganancia" del vector y , y el comportamiento del propietario de la fábrica se describe como "maximizador de ganancias". [1]
Las siguientes propiedades pueden predecirse a partir de conjuntos de producción. [2]
Si un conjunto de producción es separable y tiene una única salida, entonces se puede construir una función F ( y ) cuyo valor es la cantidad máxima de salida obtenible para los insumos dados, y cuyo dominio es el conjunto de subvectores de insumos representados en el conjunto de producción. Esto se conoce como la función de producción .
Si un conjunto de producción es separable, entonces podemos definir una "función de valor de producción" f p ( x ) en términos de un vector de precios p . Si x es una cantidad monetaria, entonces f p ( x ) es el valor monetario máximo de la producción obtenible en Y a partir de insumos cuyo costo es x .
Los rendimientos constantes a escala significan que si y está en el conjunto de producción, entonces también lo está λ y para cualquier λ positivo. Los rendimientos pueden ser constantes en una región; por ejemplo, siempre que λ no esté demasiado lejos de 1 para un y dado . No existe una forma completamente satisfactoria de definir rendimientos crecientes o decrecientes a escala para conjuntos de producción generales.
Si el conjunto de producción Y puede representarse mediante una función de producción F cuyo argumento es el subvector de entrada de un vector de producción, entonces se dispone de rendimientos crecientes a escala si F (λ y ) > λ F ( y ) para todo λ > 1 y F (λ y ) < λ F ( y ) para todo λ < 1. Se puede enunciar una condición inversa para rendimientos decrecientes a escala .
Si Y es un conjunto de producción separable con una función de valor de producción f p , entonces existen economías de escala (positivas) si f p (λ x ) > λ f p ( x ) para todo λ > 1 y f p (λ x ) < λ f p ( x ) para todo λ < 1. La condición opuesta puede denominarse economías (o deseconomías) de escala negativas.
Si Y tiene una única salida y los precios son positivos, entonces las economías de escala positivas son equivalentes a rendimientos crecientes a escala.
Al igual que con los rendimientos de escala, las economías de escala pueden aplicarse en una región. Si una fábrica está operando por debajo de su capacidad, ofrecerá economías de escala positivas, pero a medida que se acerca a su capacidad, las economías se volverán negativas. Las economías de escala para la empresa son importantes para influir en la tendencia de una industria a concentrarse en la dirección del monopolio o a desagregarse en la dirección de la competencia perfecta.
Los componentes de un vector de producción se representan convencionalmente como flujos (véase Stock y flujo ), mientras que los tratamientos más generales consideran que la producción combina stocks (por ejemplo, tierra) y flujos (por ejemplo, mano de obra) (véase Factores de producción ). En consecuencia, la definición simple de "ganancia" como el valor neto de la producción no se corresponde con su significado en otras áreas de la economía (véase Ganancia (economía) ).