stringtranslate.com

Plataforma de hielo Larsen

La plataforma de hielo Larsen es una larga plataforma de hielo en la parte noroeste del mar de Weddell , que se extiende a lo largo de la costa este de la Península Antártica [1] desde el cabo Longing hasta la península Smith . Lleva el nombre del capitán Carl Anton Larsen , capitán del ballenero noruego Jason , que navegó a lo largo del frente de hielo hasta 68°10' Sur durante diciembre de 1893. [2] En mayor detalle, la plataforma de hielo Larsen es una serie de plataformas que ocupan (u ocuparon) distintas ensenadas a lo largo de la costa. De norte a sur, los segmentos son denominados Larsen A (el más pequeño), Larsen B y Larsen C (el más grande) por los investigadores que trabajan en la zona. [3] Más al sur, también se nombran Larsen D y los mucho más pequeños Larsen E, F y G. [4]

Se ha informado ampliamente sobre la ruptura de la plataforma de hielo desde mediados de la década de 1990, [5] siendo particularmente dramático el colapso de Larsen B en 2002. Una gran sección de la plataforma Larsen C se desprendió en julio de 2017 para formar un iceberg conocido como A-68 . [6]

La plataforma de hielo originalmente cubría un área de 85.000 kilómetros cuadrados (33.000 millas cuadradas), pero tras la desintegración en el norte y la ruptura del iceberg A-17, ahora cubre un área de 67.000 kilómetros cuadrados (26.000 millas cuadradas). [1]

Investigación

Ubicación de la Península Antártica dentro de la Antártida

El colapso de Larsen B ha revelado un próspero ecosistema quimiotrófico a 800 m (media milla) bajo el mar. El descubrimiento fue accidental. Los científicos del Programa Antártico de EE. UU. se encontraban en el noroeste del Mar de Weddell investigando el registro de sedimentos en una profunda depresión glacial de aproximadamente 1.000.000 de kilómetros cuadrados (390.000 millas cuadradas) (el doble del tamaño de Texas o Francia ). Se sospecha que el metano y el sulfuro de hidrógeno asociados con las filtraciones frías son la fuente de energía química que alimenta el ecosistema. El área había sido protegida por la plataforma de hielo suprayacente de los escombros y sedimentos que se veían acumularse en las esteras microbianas blancas después de la ruptura de la plataforma de hielo. Se observaron almejas agrupadas alrededor de los respiraderos. [7]

Procesos alrededor de una plataforma de hielo antártica

La antigua región de Larsen A, que era la más al norte y estaba justo fuera del Círculo Antártico , se había dividido anteriormente en medio del actual interglaciar y se había reformado hace sólo unos 4.000 años. El antiguo Larsen B, por el contrario, se había mantenido estable durante al menos 10.000 años. [8] El hielo de la plataforma se renueva en un plazo de tiempo mucho más corto y el hielo más antiguo de la plataforma actual data de hace sólo doscientos años. La velocidad del glaciar Crane se triplicó después del colapso del Larsen B, probablemente debido a la eliminación del efecto de refuerzo de la plataforma de hielo. [9] Los datos recopilados en 2007 por un equipo internacional de investigadores a través de mediciones de radar por satélite sugieren que el balance general de masa de la capa de hielo en la Antártida es cada vez más negativo. [10]

Ruptura

Una imagen del colapso de la plataforma de hielo Larsen B y una comparación de ésta con el estado estadounidense de Rhode Island .

Los acontecimientos de desintegración de Larsen fueron inusuales según los estándares del pasado. Normalmente, las plataformas de hielo pierden masa por el desprendimiento del iceberg y por el derretimiento de sus superficies superior e inferior. Los eventos de desintegración fueron vinculados por el periódico The Independent en 2005 con el actual calentamiento climático en la Península Antártica , alrededor de 0,5°C (0,9°F) por década desde finales de los años 1940. [11] Según un artículo publicado en Journal of Climate en 2006, la península en la estación Faraday se calentó 2,94˚C (5,3˚F) entre 1951 y 2004, mucho más rápido que la Antártida en su conjunto y más rápido que la tendencia global; El calentamiento global antropogénico provoca este calentamiento localizado a través del fortalecimiento de los vientos que rodean la Antártida. [12]

Larsen A.

La plataforma de hielo Larsen A se desintegró en enero de 1995. [3]

Larsen B.

El colapso de Larsen B, que muestra la disminución de la extensión de la plataforma entre 1998 y 2002.

Del 31 de enero de 2002 a marzo de 2002, el sector Larsen B colapsó parcialmente y partes se rompieron, 3.250 km 2 (1.250 millas cuadradas) de hielo de 220 m (720 pies) de espesor, un área comparable al estado estadounidense de Rhode Island . [13] En 2015, un estudio concluyó que la plataforma de hielo Larsen B restante se desintegraría para 2020, basándose en observaciones de un flujo más rápido y un rápido adelgazamiento de los glaciares en el área. [14]

Larsen B se mantuvo estable durante al menos 10.000 años, esencialmente todo el período Holoceno desde el último período glacial. [8] Por el contrario, Larsen A estuvo ausente durante una parte significativa de ese período, reformándose hace unos 4.000 años.

A pesar de su gran antigüedad, el Larsen B estaba claramente en problemas en el momento del colapso. Con las corrientes cálidas devorando la parte inferior de la plataforma, se había convertido en un "punto crítico de calentamiento global". [15] Se rompió en un período de tres semanas o menos, siendo un factor en esta rápida ruptura los poderosos efectos del agua; Se formaron estanques de agua de deshielo en la superficie durante las casi 24 horas de luz del día en verano, fluyeron hacia las grietas y, actuando como una multitud de cuñas, separaron la plataforma. [16] [17] Otros factores probables en la ruptura fueron las temperaturas más altas del océano y la disminución del hielo de la península. [18]

En el invierno austral de 2011, se formó una gran extensión de hielo marino sobre la bahía que alguna vez estuvo cubierta por la plataforma firme de hielo glacial de agua dulce de Larsen B. Esta enorme capa de hielo persistió hasta enero de 2022, cuando se rompió repentinamente. en el transcurso de unos días, "llevando consigo un trozo del tamaño de Filadelfia de la plataforma de hielo Scar Inlet ", según los científicos de la NASA que examinan imágenes de los satélites Terra y Aqua . [19]

Larsen C.

Grieta de 2016 en Larsen C, vista amplia
Cuatro figuras que muestran 1) cómo la flotabilidad de una plataforma de hielo sostiene el descenso del glaciar, ralentizando su movimiento, 2) cómo las temperaturas más cálidas reducen la masa de la plataforma de hielo y proporcionan más agua de deshielo para lubricar el glaciar, lo que hace que se mueva más rápido, 3) cómo la falta de una plataforma de hielo conduce a un movimiento más rápido del glaciar y a un rápido desprendimiento hacia el mar, y 4) cómo esto conduce a un glaciar más delgado con una superficie más empinada que se mueve aún más rápido
Interacciones entre glaciar y plataforma de hielo.
El iceberg fracturado y la plataforma son visibles en esta imagen adquirida por el sensor térmico infrarrojo (TIRS) del satélite Landsat 8 el 21 de julio de 2017 (más claro = más cálido).

En julio de 2017 , Larsen C era la cuarta plataforma de hielo más grande de la Antártida, con un área de aproximadamente 44.200 km2 ( 17.100 millas cuadradas). [20]

Las mediciones de altímetro por radar satelital muestran que entre 1992 y 2001, la plataforma de hielo Larsen se adelgazó hasta 0,27 ± 0,11 metros por año. [21] En 2004, un informe concluyó que, aunque la región restante de Larsen C parecía ser relativamente estable, [22] el calentamiento continuo podría llevar a su ruptura en la siguiente década. [23]

El proceso de ruptura del iceberg había comenzado a mediados de 2016. [24] [25] El 10 de noviembre de 2016, los científicos fotografiaron la creciente grieta que corre a lo largo de la plataforma de hielo Larsen C, [26] mostrándola de unos 110 kilómetros (68 millas) de largo con un ancho de más de 91 m (299 pies). y una profundidad de 500 m (1600 pies). Para diciembre de 2016, la grieta se había extendido otros 21 km (13 millas) hasta el punto en que solo quedaban 20 km (12 millas) de hielo intacto y se consideraba que el desprendimiento era una certeza en 2017. [27] Se predijo que esto causaría la desprendimiento de entre el nueve y el doce por ciento de la plataforma de hielo, 6.000 km 2 (2.300 millas cuadradas), un área mayor que el estado estadounidense de Delaware , [20] o el doble del tamaño de Luxemburgo . [28] Se predijo que el fragmento desprendido tendría 350 m (1.150 pies) de espesor y una superficie de aproximadamente 5.000 km 2 (1.900 millas cuadradas). [20] Se predijo que el iceberg resultante estaría entre los más grandes jamás registrados , a menos que se rompiera en varios pedazos. [27]

El 1 de mayo de 2017, miembros de MIDAS informaron que las imágenes de satélite mostraban una nueva grieta, de unos 15 km (9 millas) de largo, que se bifurcaba de la grieta principal aproximadamente 10 km (6 millas) detrás de la punta anterior, en dirección al frente de hielo. [29] Los científicos de la Universidad de Swansea en el Reino Unido dicen que la grieta se alargó 18 km (11 millas) del 25 al 31 de mayo, y que menos de 13 km (8 millas) de hielo es todo lo que impide el nacimiento de un enorme iceberg. "La punta de la grieta también parece haberse girado significativamente hacia el frente de hielo, lo que indica que el momento del desprendimiento probablemente esté muy cerca", escribieron Adrian Luckman y Martin O'Leary el miércoles en una publicación de blog para Impact of Melt on Ice Shelf Dynamics. y Proyecto de Estabilidad, o MIDAS. "Parece haber muy poco que pueda impedir que el iceberg se rompa por completo". La franja más grande de la plataforma de hielo Larsen C que se encontraba detrás del iceberg desprendido "será menos estable que antes de la grieta" y puede desintegrarse rápidamente de la misma manera que lo hizo Larsen B en 2002. [30]

En junio de 2017, la velocidad del inminente iceberg Larsen C se aceleró, y el extremo oriental se alejó a 10 metros (33 pies) por día de la plataforma principal. [31] Como lo discutieron los investigadores del Proyecto MIDAS en su sitio: "En otra señal de que el desprendimiento del iceberg es inminente, la parte que pronto será iceberg de la plataforma de hielo Larsen C ha triplicado su velocidad a más de 10 metros por día. entre el 24 y el 27 de junio de 2017. El iceberg permanece adherido a la plataforma de hielo, pero su extremo exterior se mueve a la velocidad más alta jamás registrada en esta plataforma de hielo." [32]

El 7 de julio, el informe del blog del Proyecto MIDAS decía: "Los últimos datos del 6 de julio revelan que, en una liberación de tensiones acumuladas, la grieta se bifurcó varias veces. Utilizando datos de los satélites Sentinel-1 de la ESA , podemos ver que hay "Ahora hay múltiples puntas de fisuras a 5 km (3,10 millas) del borde del hielo. Esperamos que estas fisuras conduzcan a la formación de varios icebergs más pequeños". [33]

El 12 de julio de 2017, el Proyecto MIDAS anunció que una gran porción de Larsen C de 5.800 kilómetros cuadrados (2.200 millas cuadradas) se había desprendido de la plataforma de hielo principal en algún momento entre el 10 y el 12 de julio. [6] [34] El iceberg, denominado A-68 , pesa más de un billón de toneladas [35] [36] y tiene más de 200 m (700 pies) de espesor. [37] [38]

El Proyecto MIDAS actualizó la información de su blog el 19 de julio de 2017 con respecto a Larsen C al revelar que una posible nueva grieta parecía extenderse hacia el norte desde el punto donde la A-68 se había roto a mediados de julio. Los investigadores del proyecto sintieron que esta nueva y cuestionable grieta podría girar hacia el borde de la plataforma, agravando el riesgo de que "continuara hasta la elevación del hielo de Bawden", que se considera "un punto crucial de estabilización de la plataforma de hielo Larsen C". [39]

Como ocurre con todas las plataformas de hielo flotantes, la salida de A68 de la Antártida no tuvo un efecto inmediato en los niveles globales del mar . Sin embargo, varios glaciares se descargan en la plataforma desde la tierra detrás de ella, y ahora pueden fluir más rápido debido al menor soporte de la plataforma de hielo. Si todo el hielo que actualmente contiene la plataforma Larsen C entrara al mar, las aguas globales aumentarían aproximadamente 10 cm (4 pulgadas). [40]

Larsen D.

La plataforma de hielo Larsen D se encuentra entre la península Smith en el sur y Gipps Ice Rise . Se considera que en general es estable. Durante aproximadamente los últimos cincuenta años ha avanzado (expandido), mientras que las plataformas de hielo comparables de Jorge VI , Bach , Stange y Larsen C han retrocedido (en una extensión neta mucho mayor). El estudio más reciente de Larsen D lo midió en 22.600 km 2 . Hay hielo fijo a lo largo de todo el frente. Esto dificulta la interpretación del frente de hielo porque el hielo marino semipermanente varía en espesor y puede ser casi indistinguible de la plataforma de hielo. [41]

Galería

Ver también

notas y referencias

  1. ^ ab "Plataforma de hielo Larsen". Enciclopedia Británica .
  2. ^ Sistema de información de nombres geográficos del Servicio Geológico de EE. UU.: Plataforma de hielo Larsen
  3. ^ ab Fox, Douglas (2012). "Testigo de un derretimiento antártico". Científico americano . 307 (1): 54–61. Código Bib : 2012SciAm.307a..54F. doi : 10.1038/scientificamerican0712-54. PMID  22779273.
  4. ^ Rignot, E; Jacobs, S; Mouginot, J; Scheuchl, B (13 de junio de 2013). "La plataforma de hielo se derrite alrededor de la Antártida" (PDF) . Ciencia . 341 (6143): 266–270. Código Bib : 2013 Ciencia... 341..266R. doi : 10.1126/ciencia.1235798. PMID  23765278. S2CID  206548095 . Consultado el 21 de enero de 2017 .
  5. ^ Chris Wickham (9 de mayo de 2012). "El agua cálida amenaza la vasta plataforma de hielo de la Antártida (+ vídeo)". El Monitor de la Ciencia Cristiana/Reuters . Consultado el 20 de enero de 2017 .
  6. ^ ab "Un iceberg cuatro veces el tamaño de Londres se desprende de la plataforma de hielo de la Antártida". El Telégrafo diario . 12 de julio de 2017.
  7. ^ Domack, Eugenio ; Isman, Scott; Leventer, Amy; Sylva, Sean; Willmott, Verónica; Huber, Bruce (19 de julio de 2005). "Un ecosistema quimiotrófico encontrado debajo de la plataforma de hielo antártica". Eos, Transacciones Unión Geofísica Estadounidense . 86 (29): 269. Código bibliográfico : 2005EOSTr..86..269D. doi : 10.1029/2005EO290001 . Consultado el 20 de octubre de 2016 .
  8. ^ ab "La desintegración de la plataforma de hielo amenaza el medio ambiente, estudio de Queen" (Presione soltar). Kingston, Ontario: Universidad de Queens. 3 de agosto de 2005, a través de Eurekalert de la Asociación Estadounidense para el Avance de la Ciencia .
  9. ^ Rignot, E.; Casassa, G.; Gogineni, P.; Krabill, W.; Rivera, A.; Thomas, R. (2004). "Descarga acelerada de hielo de la Península Antártica tras el colapso de la plataforma de hielo Larsen B" (PDF) . Cartas de investigación geofísica . 31 (18): L18401. Código Bib : 2004GeoRL..3118401R. doi : 10.1029/2004GL020697 . Consultado el 22 de octubre de 2016 .
  10. ^ Perlman, David (2008) "Los glaciares antárticos se derriten más rápidamente" San Francisco Chronicle (26 de enero) p. A2, en línea
  11. ^ Connor, Steve (2005) "El colapso de la plataforma de hielo fue el mayor en 10.000 años desde la Edad del Hielo" The Independent, Londres (4 de agosto), en línea
  12. ^ Marshall, Gareth J.; Orr, Andrés; Van Lipzig, Nicole PM; Rey, John C. (2006). "El impacto de un modo anular cambiante en el hemisferio sur en las temperaturas de verano de la Península Antártica" (PDF) . Revista de Clima . 19 (20): 5388–5404. Código Bib : 2006JCli...19.5388M. doi :10.1175/JCLI3844.1.
  13. ^ Hulbe, Cristina (2002). "Larsen Ice Shelf 2002, el verano más cálido registrado conduce a la desintegración". Universidad Estatal de Portland .
  14. ^ "Un estudio de la NASA muestra que la plataforma de hielo Larsen B de la Antártida se acerca a su acto final" (Presione soltar). NASA. 14 de mayo de 2015.
  15. ^ Pearce, Fred (2006). La última generación: cómo la naturaleza se vengará del cambio climático . Libros del Proyecto Edén. pag. 92.ISBN 978-1-903919-87-3.
  16. ^ "La plataforma de hielo Larsen B se derrumba en la Antártida". Centro Nacional de Datos de Nieve y Hielo . 18 de marzo de 2002. Archivado desde el original el 14 de julio de 2017 . Consultado el 12 de julio de 2017 .
  17. ^ "Colapso de la plataforma de hielo antártica provocado por veranos más cálidos". Oficina de Servicios de Noticias, Universidad de Colorado en Boulder . 16 de enero de 2001 . Consultado el 12 de julio de 2017 .
  18. ^ "Los expertos cuestionan la afirmación de la plataforma de hielo". Dos científicos han afirmado que el cambio climático no fue la única causa del colapso de una plataforma de hielo de 500 mil millones de toneladas en la Antártida hace seis años . Noticias de la BBC. 7 de febrero de 2008 . Consultado el 21 de octubre de 2016 .
  19. ^ Hansen, Kathryn; Stevens, Joshua (26 de enero de 2022). "Larsen B Embayment se disuelve". Observatorio de la Tierra de la NASA . Administración Nacional de Aeronáutica y Espacio . Consultado el 6 de febrero de 2022 .
  20. ^ abc "Creciente grieta en la plataforma de hielo Larsen C de la Antártida detectada por el MISR de la NASA". Laboratorio de Propulsión a Chorro .
  21. ^ Pastor, Andrés; Wingham, Duncan; Payne, Tony; Skvarca, Pedro (31 de octubre de 2003). "La plataforma de hielo Larsen se ha adelgazado progresivamente". Ciencia . 302 (5646): 856–859. Código Bib : 2003 Ciencia... 302..856S. doi : 10.1126/ciencia.1089768. ISSN  0036-8075. PMID  14593176. S2CID  7034012.
  22. ^ Riedl C, Rott H, Rack W (2004) "Variaciones recientes de la plataforma de hielo Larsen, Península Antártica, observadas por Envisat" Actas del Simposio Envisat y ERS de 2004 , Salzburgo, Austria, en línea
  23. ^ Rignot, Eric (2007) "Balance de masa y dinámica del hielo de los glaciares de la Península Antártica para el API 2007-2008" Propuesta n.º 359, Expresión de intención del Año Polar Internacional.
  24. ^ Adrián Luckman; Daniela Jansen; Martín O'Leary; el equipo MIDAS (18 de agosto de 2016). "Una brecha creciente en Larsen C". proyectomidas.org . Consultado el 21 de octubre de 2016 .
  25. ^ Zee Media Bureau (23 de agosto de 2016). "Una enorme grieta amenaza con colapsar la plataforma de hielo antártica Larsen C". zeenews.india.com . Consultado el 21 de octubre de 2016 . Informe de prensa sobre el Proyecto MIDAS
  26. ^ Loff, Sarah, ed. (13 de diciembre de 2016). "Grieta en la plataforma de hielo Larsen C de la Antártida". John Sonntag (crédito de la imagen). NASA . Consultado el 5 de enero de 2017 .
  27. ^ ab McGrath, Matt (5 de enero de 2017). "Enorme iceberg antártico a punto de desprenderse". Ciencia y Medio Ambiente. BBC . Consultado el 5 de enero de 2017 , a través de BBC.com.
  28. ^ Nicola Davis (12 de julio de 2017). "Un iceberg del doble del tamaño de Luxemburgo se desprende de la plataforma de hielo de la Antártida". Guardián . Consultado el 13 de julio de 2017 .
  29. ^ "La enorme grieta de la plataforma de hielo de la Antártida ahora tiene una segunda rama". EE.UU. Hoy en día .
  30. ^ "Una grieta gigante en el hielo de la Antártida está a 'días o semanas' de romper un iceberg del tamaño de Delaware". Business Insider . Consultado el 2 de junio de 2017 .
  31. ^ O'Leary, Martín; Luckman, Adrián; Proyecto MIDAS. "El iceberg de Larsen C acelera antes de partir". Proyecto MIDAS . Consultado el 1 de julio de 2017 .
  32. ^ "La grieta de la plataforma de hielo Larsen C se acerca a su final, el borde exterior se aleja de la plataforma de hielo a una velocidad de 33 pies por día". CleanTechnica . 30 de junio de 2017 . Consultado el 1 de julio de 2017 .
  33. ^ "La grieta Larsen C se ramifica cuando se encuentra a 5 km del nacimiento". Proyecto MIDAS . Consultado el 7 de julio de 2017 .
  34. ^ "Un iceberg gigante se separa de la Antártida". BBC. 12 de julio de 2017.
  35. ^ "Un iceberg enorme se desprende de la Antártida". CNN. 12 de julio de 2017.
  36. ^ "Larsen C genera un iceberg de un billón de toneladas". Proyecto MIDAS. 12 de julio de 2017 . Consultado el 12 de julio de 2017 .
  37. ^ Amós, Jonathan (12 de julio de 2017). "Un iceberg gigante se separa de la Antártida". BBC . Consultado el 12 de julio de 2017 .
  38. ^ MIDAS, Proyecto. "Larsen C genera un iceberg de un billón de toneladas". Proyecto MIDAS . Consultado el 12 de julio de 2017 .
  39. ^ MIDAS, Proyecto. "Larsen C responde al parto de A68". Proyecto MIDAS . Consultado el 20 de julio de 2017 .
  40. ^ "Enorme iceberg antártico a punto de desprenderse". Noticias de la BBC. 6 de enero de 2017 . Consultado el 6 de enero de 2017 .
  41. ^ Descripción general de los cambios reales de las plataformas de hielo de la Península Antártica durante los últimos 50 años. Las discusiones sobre la criosfera. 3 páginas 579-630.

enlaces externos

67°30′S 62°30′W / 67.500°S 62.500°W / -67.500; -62.500