stringtranslate.com

Materia nuclear

Fases de la materia nuclear con igual número de neutrones y protones; comparar con Siemens y Jensen. [1]

La materia nuclear es un sistema idealizado de nucleones interactuantes ( protones y neutrones ) que existe en varias fases de materia exótica que, hasta el momento, no están completamente establecidas. [2] No es materia en un núcleo atómico , sino una sustancia hipotética que consiste en una gran cantidad de protones y neutrones unidos solo por fuerzas nucleares y no por fuerzas de Coulomb . [3] [4] El volumen y el número de partículas son infinitos, pero la proporción es finita. [5] El volumen infinito implica que no hay efectos de superficie y una invariancia traslacional (solo diferencias en la posición de la materia, no posiciones absolutas).

Una idealización común es la materia nuclear simétrica , que consiste en un número igual de protones y neutrones, sin electrones .

Cuando la materia nuclear se comprime a una densidad suficientemente alta, se espera, sobre la base de la libertad asintótica de la cromodinámica cuántica , que se convierta en materia de quarks , que es un gas de Fermi degenerado de quarks. [6]

Sección transversal de una estrella de neutrones. Las densidades se expresan en términos de ρ 0 , la densidad de materia nuclear de saturación, donde los nucleones comienzan a tocarse. Modelado según Haensel et al. , [7] página 12

Algunos autores utilizan "materia nuclear" en un sentido más amplio, y se refieren al modelo descrito anteriormente como "materia nuclear infinita", [1] y lo consideran como un "modelo de juguete", un campo de pruebas para técnicas analíticas. [8] Sin embargo, la composición de una estrella de neutrones , que requiere más que neutrones y protones, no es necesariamente neutral en cuanto a carga local y no exhibe invariancia de traslación, a menudo se la denomina de manera diferente, por ejemplo, como materia de estrella de neutrones o materia estelar y se considera distinta de la materia nuclear. [9] [10] En una estrella de neutrones, la presión aumenta desde cero (en la superficie) hasta un valor grande desconocido en el centro.

Se han aplicado métodos capaces de tratar regiones finitas a estrellas y núcleos atómicos. [11] [12] Uno de estos modelos para núcleos finitos es el modelo de gota líquida , que incluye efectos de superficie e interacciones de Coulomb.

Véase también

Referencias

  1. ^ de Phillip John Siemens; Aksel S. Jensen (1994). Elementos de los núcleos: física de muchos cuerpos con interacción fuerte. Westview Press . ISBN 0-201-62731-0.[ enlace muerto permanente ]
  2. ^ Dominique Durand; Eric Suraud; Bernard Tamain (2001). Dinámica nuclear en el régimen nucleónico. CRC Press . p. 4. ISBN 0-7503-0537-1.
  3. ^ Richard D. Mattuck (1992). Una guía para los diagramas de Feynman en el problema de muchos cuerpos (reimpresión de la segunda edición de McGraw-Hill de 1974). Courier Dover Publications . ISBN 0-486-67047-3.
  4. ^ John Dirk Walecka (2004). Física nuclear y subnuclear teórica (2.ª ed.). World Scientific . pág. 18. ISBN 981-238-898-2.
  5. ^ Helmut Hofmann (2008). La física de los núcleos cálidos: con analogías con los sistemas mesoscópicos. Oxford University Press . pág. 36. ISBN 978-0-19-850401-6.
  6. ^ Stefan B Rüster (2007). "Diagrama de fases de materia de quarks neutros a densidades moderadas". En Armen Sedrakian; John Walter Clark; Mark Gower Alford (eds.). Apareamiento en sistemas fermiónicos . World Scientific. ISBN 978-981-256-907-3.
  7. ^ Paweł Haensel; AY Potekhin; Director General Yakovlev (2007). Estrellas de neutrones. Saltador. ISBN 978-0-387-33543-8.
  8. ^ Herbert Müther (1999). "Enfoque de Dirac-Brueckner para núcleos finitos". En Marcello Baldo (ed.). Métodos nucleares y ecuación de estado nuclear . World Scientific. pág. 170. ISBN 981-02-2165-7.
  9. ^ Francesca Gulminelli (2007). "Materia nuclear versus materia estelar". En AA Raduta; V. Baran; AC Gheorghe; et al. (eds.). Movimiento colectivo y transiciones de fase en sistemas nucleares . World Scientific. ISBN 978-981-270-083-4.
  10. ^ Norman K. Glendenning (2000). Estrellas compactas (2.ª ed.). Springer. pág. 242. ISBN 0-387-98977-3.
  11. ^ F. Hofmann; CM Keil; H. Lenske (2001). "Teoría del campo hadrónico dependiente de la densidad para materia nuclear asimétrica y núcleos exóticos". Phys. Rev. C . 64 (3): 034314. arXiv : nucl-th/0007050 . Código Bibliográfico :2001PhRvC..64c4314H. doi :10.1103/PhysRevC.64.034314. S2CID  17453709.
  12. ^ A. Rabhi; C. Providencia; J. Da Providencia (2008). "Materia estelar con un fuerte campo magnético dentro de modelos relativistas dependientes de la densidad". J Phys G . 35 (12): 125201. arXiv : 0810.3390 . Bibcode :2008JPhG...35l5201R. doi :10.1088/0954-3899/35/12/125201. S2CID  119098245.