stringtranslate.com

Expansión de Engel

La expansión de Engel de un número real positivo x es la única secuencia no decreciente de números enteros positivos tal que

Por ejemplo, el número e de Euler tiene la expansión de Engel [1]

1, 1, 2, 3, 4, 5, 6, 7, 8,...

correspondiente a la serie infinita

Los números racionales tienen un desarrollo de Engel finito, mientras que los números irracionales tienen un desarrollo de Engel infinito. Si x es racional, su expansión de Engel proporciona una representación de x como una fracción egipcia . Las ampliaciones de Engel llevan el nombre de Friedrich Engel , quien las estudió en 1913.

Una expansión análoga a una expansión de Engel , en la que los términos alternos son negativos, se llama expansión de Pierce.

Expansiones de Engel, fracciones continuas y Fibonacci

Kraaikamp y Wu (2004) observan que una expansión de Engel también puede escribirse como una variante ascendente de una fracción continua :

Afirman que las fracciones continuas ascendentes como ésta se han estudiado ya en el Liber Abaci de Fibonacci (1202). Esta afirmación parece referirse a la notación de fracciones compuestas de Fibonacci en la que una secuencia de numeradores y denominadores que comparten la misma barra de fracción representa una fracción continua ascendente:

Si tal notación tiene todos los numeradores 0 o 1, como ocurre en varios casos en Liber Abaci , el resultado es una expansión de Engel. Sin embargo, Fibonacci no parece describir la expansión de Engel como técnica general.

Algoritmo para calcular las expansiones de Engel

Para encontrar la expansión de Engel de x , sea

y

¿Dónde está la función techo (el número entero más pequeño no menor que r )?

Si hay alguna i , detenga el algoritmo.

Funciones iteradas para calcular expansiones de Engel.

Otro método equivalente es considerar el mapa [2]

y establecer

dónde

y

Otro método equivalente, llamado expansión de Engel modificada, calculada por

y

El operador de transferencia del mapa Engel

El operador de transferencia Frobenius-Perron del mapa de Engel actúa sobre funciones con

desde

y el inverso del n -ésimo componente es el que se encuentra resolviendo .

Relación con la función Riemann ζ

La transformada de Mellin del mapa está relacionada con la función zeta de Riemann mediante la fórmula

Ejemplo

Para encontrar la expansión de Engel de 1,175, realizamos los siguientes pasos.

La serie termina aquí. De este modo,

y el desarrollo de Engel de 1,175 es (1, 6, 20).

Expansiones de Engel de números racionales

Todo número racional positivo tiene un desarrollo de Engel finito único. En el algoritmo de expansión de Engel, si u i es un número racional x / y , entonces u i  + 1 = (− y mod x )/ y . Por lo tanto, en cada paso, el numerador de la fracción restante u i disminuye y el proceso de construcción de la expansión de Engel debe terminar en un número finito de pasos. Todo número racional también tiene una expansión de Engel infinita única: usando la identidad

el dígito final n en una expansión de Engel finita se puede reemplazar por una secuencia infinita de ( n  + 1) sin cambiar su valor. Por ejemplo,

Esto es análogo al hecho de que cualquier número racional con una representación decimal finita también tiene una representación decimal infinita (ver 0,999... ). Una expansión de Engel infinita en la que todos los términos son iguales es una serie geométrica .

Erdős , Rényi y Szüsz pidieron límites no triviales para la longitud de la expansión finita de Engel de un número racional x / y  ; esta pregunta fue respondida por Erdős y Shallit , quienes demostraron que el número de términos en la expansión es O( y 1/3 + ε ) para cualquier ε > 0. [3]

Expansiones de Engel para algunas constantes conocidas

= (1, 1, 1, 8, 8, 17, 19, 300, 1991, 2492, ...) (secuencia A006784 en el OEIS )
= (1, 3, 5, 5, 16, 18, 78, 102, 120, 144, ...) (secuencia A028254 en el OEIS )
= (1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...) (secuencia A028310 en el OEIS )

La expansión de Engel para progresiones aritméticas se puede representar como

dónde y . Así, en general

donde representa la función gamma incompleta inferior .

Específicamente, si ,


Puede encontrar más expansiones de Engel para constantes aquí.

Tasa de crecimiento de los términos de expansión.

Los coeficientes a i de la expansión de Engel suelen exhibir un crecimiento exponencial ; más precisamente, para casi todos los números en el intervalo (0,1], el límite existe y es igual a e . Sin embargo, el subconjunto del intervalo para el cual este no es el caso sigue siendo lo suficientemente grande como para que su dimensión de Hausdorff sea uno. [4]

La misma tasa de crecimiento típica se aplica a los términos en expansión generados por el codicioso algoritmo para las fracciones egipcias . Sin embargo, el conjunto de números reales en el intervalo (0,1] cuyas expansiones de Engel coinciden con sus expansiones codiciosas tiene medida cero y dimensión de Hausdorff 1/2. [5]

Ver también

Notas

  1. ^ Sloane, Nueva Jersey (ed.). "Secuencia A028310". La enciclopedia en línea de secuencias enteras . Fundación OEIS.
  2. ^ Sloane, Nueva Jersey (ed.). "Secuencia A220335". La enciclopedia en línea de secuencias enteras . Fundación OEIS.
  3. ^ Erdős, Rényi y Szüsz (1958); Erdős y Shallit (1991).
  4. ^ Wu (2000). Wu atribuye el resultado de que el límite casi siempre es e a Janos Galambos .
  5. ^ Wu (2003).

Referencias

enlaces externos