stringtranslate.com

El decimoséptimo problema de Hilbert

El decimoséptimo problema de Hilbert es uno de los 23 problemas de Hilbert establecidos en una célebre lista compilada en 1900 por David Hilbert . Se trata de la expresión de funciones racionales definidas positivas como sumas de cocientes de cuadrados . La pregunta original puede reformularse como:

La pregunta de Hilbert puede restringirse a polinomios homogéneos de grado par, ya que un polinomio de grado impar cambia de signo, y la homogeneización de un polinomio toma sólo valores no negativos si y sólo si lo mismo es cierto para el polinomio.

Motivación

La formulación de la pregunta tiene en cuenta que existen polinomios no negativos , por ejemplo [1]

que no se puede representar como suma de cuadrados de otros polinomios . En 1888, Hilbert demostró que todo polinomio homogéneo no negativo en n variables y grado 2 d puede representarse como suma de cuadrados de otros polinomios si y sólo si (a) n = 2 o (b) 2 d = 2 o ( c) n = 3 y 2 d = 4. [2] La prueba de Hilbert no exhibió ningún contraejemplo explícito: recién en 1967 Motzkin construyó el primer contraejemplo explícito . [3] Además, si el polinomio tiene un grado 2 d mayor que dos, hay muchos más polinomios no negativos que no pueden expresarse como sumas de cuadrados. [4]

La siguiente tabla resume en qué casos todo polinomio homogéneo no negativo (o un polinomio de grado par) se puede representar como una suma de cuadrados:

Solución y generalizaciones.

El caso particular de n = 2 ya fue resuelto por Hilbert en 1893. [5] El problema general fue resuelto afirmativamente, en 1927, por Emil Artin , [6] para funciones semidefinidas positivas sobre los reales o, más generalmente, reales-cerradas. campos . Charles Delzell encontró una solución algorítmica en 1984. [7] Un resultado de Albrecht Pfister [8] muestra que una forma semidefinida positiva en n variables se puede expresar como una suma de 2 n cuadrados. [9]

Dubois demostró en 1967 que la respuesta es negativa en general para campos ordenados . [10] En este caso se puede decir que un polinomio positivo es una suma de cuadrados ponderados de funciones racionales con coeficientes positivos. [11] McKenna demostró en 1975 que todos los polinomios semidefinidos positivos con coeficientes en un campo ordenado son sumas de cuadrados ponderados de funciones racionales con coeficientes positivos sólo si el campo es denso en su cierre real en el sentido de que cualquier intervalo con puntos finales en el real El cierre contiene elementos del campo original. [12]

Gondard, Ribenboim [13] y Procesi, Schacher, [14] dieron una generalización al caso matricial (las matrices con entradas de funciones polinomiales que siempre son semidefinidas positivas se pueden expresar como suma de cuadrados de matrices simétricas con entradas de funciones racionales) con una prueba elemental dada por Hillar y Nie. [15]


Número mínimo de términos racionales cuadrados

Es una pregunta abierta ¿cuál es el número más pequeño?

tal que cualquier polinomio n -variado y no negativo de grado d puede escribirse como suma de, como máximo, funciones racionales cuadradas sobre los reales. Un límite superior debido a Pfister en 1967 es: [8]

En la otra dirección, se puede derivar un límite inferior condicional de la teoría de la complejidad computacional . Una instancia de n variables de 3-SAT se puede realizar como un problema de positividad en un polinomio con n variables y d=4 . Esto demuestra que la prueba de positividad es NP-Duro . Más precisamente, suponiendo que la hipótesis del tiempo exponencial sea cierta ,

En análisis complejos, el análogo hermitiano, que requiere que los cuadrados sean normas al cuadrado de asignaciones holomorfas, es algo más complicado, pero es cierto para polinomios positivos por un resultado de Quillen. [16] El resultado de Pfister, por otro lado, falla en el caso hermitiano, es decir, no hay límite en el número de cuadrados requeridos, ver D'Angelo-Lebl. [17]

Ver también

Notas

  1. ^ Marie-Françoise Roy . El papel de los problemas de Hilbert en la geometría algebraica real. Actas de la novena reunión del EWM, Loccum, Alemania 1999
  2. ^ Hilbert, David (septiembre de 1888). "Ueber die Darstellung definiter Formen als Summe von Formenquadraten". Annalen Matemáticas . 32 (3): 342–350. doi :10.1007/bf01443605. S2CID  177804714.
  3. ^ Motzkin, TS (1967). "La desigualdad aritmético-geométrica". En Shisha, Oved (ed.). Desigualdades . Prensa académica. págs. 205–224.
  4. ^ Blekherman, Grigoriy (2006). "Hay muchos más polinomios no negativos que sumas de cuadrados". Revista Israelí de Matemáticas . 153 (1): 355–380. doi : 10.1007/BF02771790 . ISSN  0021-2172.
  5. ^ Hilbert, David (diciembre de 1893). "Über ternäre formas definitivas". Acta Matemática . 17 (1): 169–197. doi : 10.1007/bf02391990 .
  6. ^ Artín, Emil (1927). "Über die Zerlegung definiter Funktionen in Quadrate". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg . 5 (1): 100–115. doi :10.1007/BF02952513. S2CID  122607428.
  7. ^ Delzell, CN (1984). "Una solución continua y constructiva al problema número 17 de Hilbert". Invenciones Mathematicae . 76 (3): 365–384. Código Bib : 1984 InMat..76..365D. doi :10.1007/BF01388465. S2CID  120884276. Zbl  0547.12017.
  8. ^ ab Pfister, Albrecht (1967). "Zur Darstellung definiter Funktionen als Summe von Quadraten". Inventiones Mathematicae (en alemán). 4 (4): 229–237. Código Bib : 1967 InMat...4..229P. doi :10.1007/bf01425382. S2CID  122180608. Zbl  0222.10022.
  9. ^ Lam (2005) p.391
  10. ^ Dubois, DW (1967). "Nota sobre la solución de Artin al problema número 17 de Hilbert". Toro. Soy. Matemáticas. Soc . 73 (4): 540–541. doi : 10.1090/s0002-9904-1967-11736-1 . Zbl  0164.04502.
  11. ^ Lorenz (2008) p.16
  12. ^ McKenna, K. (1975). Nuevos datos sobre el decimoséptimo problema de Hilbert . Teoría de modelos y álgebra, Apuntes de conferencias de Matemáticas. vol. 498. Springer, Berlín, Heidelberg. págs. 220-230.
  13. ^ Gondard, Danielle; Ribenboim, Paulo (1974). "El 17e problema de Hilbert para las matrices". Toro. Ciencia. Matemáticas. (2) . 98 (1): 49–56. SEÑOR  0432613. Zbl  0298.12104.
  14. ^ Proceso, Claudio; Schacher, Murray (1976). "Un problema número 17 de Nullstellensatz y Hilbert real no conmutativo". Ana. de Matemáticas . 2. 104 (3): 395–406. doi :10.2307/1970962. JSTOR  1970962. SEÑOR  0432612. Zbl  0347.16010.
  15. ^ Hillar, Christopher J.; Nie, Jiawang (2008). "Una solución elemental y constructiva al problema número 17 de Hilbert para matrices". Proc. Soy. Matemáticas. Soc . 136 (1): 73–76. arXiv : matemáticas/0610388 . doi :10.1090/s0002-9939-07-09068-5. S2CID  119639574. Zbl  1126.12001.
  16. ^ Quillen, Daniel G. (1968). "Sobre la representación de formas ermitanas como sumas de cuadrados". Inventar. Matemáticas . 5 (4): 237–242. Código Bib : 1968 InMat...5..237Q. doi :10.1007/bf01389773. S2CID  119774934. Zbl  0198.35205.
  17. ^ D'Angelo, John P.; Lebl, Jiri (2012). "El teorema de Pfister falla en el caso hermitiano". Proc. Soy. Matemáticas. Soc . 140 (4): 1151-1157. arXiv : 1010.3215 . doi :10.1090/s0002-9939-2011-10841-4. S2CID  92993604. Zbl  1309.12001.

Referencias