stringtranslate.com

Transistor óptico

Un transistor óptico , también conocido como interruptor óptico o válvula de luz , es un dispositivo que conmuta o amplifica señales ópticas . La luz que se produce en la entrada de un transistor óptico cambia la intensidad de la luz emitida por la salida del transistor, mientras que la potencia de salida es suministrada por una fuente óptica adicional. Dado que la intensidad de la señal de entrada puede ser más débil que la de la fuente, un transistor óptico amplifica la señal óptica. El dispositivo es el análogo óptico del transistor electrónico que constituye la base de los dispositivos electrónicos modernos. Los transistores ópticos proporcionan un medio para controlar la luz utilizando únicamente luz y tienen aplicaciones en informática óptica y redes de comunicación de fibra óptica . Esta tecnología tiene el potencial de superar la velocidad de la electrónica [ cita requerida ] , al tiempo que conserva más energía . La señal de conmutación totalmente óptica más rápida demostrada es de 900 attosegundos (attosegundo = 10 ^ -18 segundos), lo que allana el camino para desarrollar transistores ópticos ultrarrápidos. [1]

Dado que los fotones inherentemente no interactúan entre sí, un transistor óptico debe emplear un medio operativo para mediar en las interacciones. Esto se hace sin convertir señales ópticas en electrónicas como paso intermedio. Se han propuesto y demostrado experimentalmente implementaciones que utilizan una variedad de medios operativos. Sin embargo, su capacidad para competir con la electrónica moderna es actualmente limitada.

Aplicaciones

Los transistores ópticos podrían usarse para mejorar el rendimiento de las redes de comunicación de fibra óptica . Aunque los cables de fibra óptica se utilizan para transferir datos, tareas como el enrutamiento de señales se realizan de forma electrónica. Esto requiere una conversión óptico-electrónica-óptica, que genera cuellos de botella. En principio, el procesamiento y enrutamiento de señales digitales totalmente ópticas se puede lograr utilizando transistores ópticos dispuestos en circuitos integrados fotónicos . [2] Los mismos dispositivos podrían usarse para crear nuevos tipos de amplificadores ópticos para compensar la atenuación de la señal a lo largo de las líneas de transmisión.

Una aplicación más elaborada de los transistores ópticos es el desarrollo de una computadora digital óptica en la que las señales son fotónicas (es decir, medios transmisores de luz) en lugar de electrónicas (cables). Además, los transistores ópticos que funcionan con fotones individuales podrían formar parte integral del procesamiento de información cuántica , donde pueden usarse para abordar selectivamente unidades individuales de información cuántica, conocidas como qubits .

En teoría, los transistores ópticos podrían ser inmunes a la alta radiación del espacio y los planetas extraterrestres, a diferencia de los transistores electrónicos que sufren perturbaciones de un solo evento .

Comparación con la electrónica.

El argumento más comúnmente defendido a favor de la lógica óptica es que los tiempos de conmutación de los transistores ópticos pueden ser mucho más rápidos que en los transistores electrónicos convencionales. Esto se debe al hecho de que la velocidad de la luz en un medio óptico suele ser mucho más rápida que la velocidad de deriva de los electrones en los semiconductores.

Los transistores ópticos se pueden conectar directamente a cables de fibra óptica , mientras que la electrónica requiere un acoplamiento mediante fotodetectores y LED o láseres . La integración más natural de los procesadores de señales totalmente ópticos con la fibra óptica reduciría la complejidad y el retraso en el enrutamiento y otros procesamientos de señales en las redes de comunicación óptica.

Sigue siendo cuestionable si el procesamiento óptico puede reducir la energía necesaria para cambiar un solo transistor a una cantidad menor que la de los transistores electrónicos. Para competir de manera realista, los transistores requieren unas pocas decenas de fotones por operación. Sin embargo, está claro que esto se puede lograr con los transistores de fotón único propuestos [3] [4] para el procesamiento de información cuántica.

Quizás la ventaja más significativa de la lógica óptica sobre la electrónica es el menor consumo de energía. Esto se debe a la ausencia de capacitancia en las conexiones entre puertas lógicas individuales . En electrónica, la línea de transmisión debe cargarse al voltaje de la señal. La capacitancia de una línea de transmisión es proporcional a su longitud y excede la capacitancia de los transistores en una puerta lógica cuando su longitud es igual a la de una sola puerta. La carga de líneas de transmisión es una de las principales pérdidas de energía en lógica electrónica. Esta pérdida se evita en las comunicaciones ópticas, donde sólo se debe transmitir por una línea la energía suficiente para conmutar un transistor óptico en el extremo receptor. Este hecho ha desempeñado un papel importante en la adopción de la fibra óptica para las comunicaciones de larga distancia, pero aún no se ha explotado a nivel de microprocesador.

Además de las posibles ventajas de mayor velocidad, menor consumo de energía y alta compatibilidad con los sistemas de comunicación óptica, los transistores ópticos deben satisfacer una serie de puntos de referencia antes de poder competir con la electrónica. [5] Ningún diseño ha satisfecho todavía todos estos criterios y al mismo tiempo ha superado la velocidad y el consumo de energía de la electrónica de última generación.

Los criterios incluyen:

Implementaciones

Se han propuesto varios esquemas para implementar transistores totalmente ópticos. En muchos casos, se ha demostrado experimentalmente una prueba de concepto. Entre los diseños se encuentran aquellos basados ​​en:

Ver también

Referencias

  1. ^ Hui, Dandan; Alqattan, Husain; Zhang, Simin; Pervak, Vladimir; Chowdhury, Enam; Hassan, Mohammed Th. (2023-02-24). "Conmutación óptica ultrarrápida y codificación de datos en campos de luz sintetizados". Avances científicos . 9 (8): eadf1015. doi :10.1126/sciadv.adf1015. ISSN  2375-2548. PMC  9946343 . PMID  36812316.
  2. ^ Jin, CY; Wada, O. (marzo de 2014). "Dispositivos de conmutación fotónica basados ​​en nanoestructuras semiconductoras". Revista de Física D. 47 (13): 133001. arXiv : 1308.2389 . Código Bib : 2014JPhD...47m3001J. doi :10.1088/0022-3727/47/13/133001. S2CID  118513312.
  3. ^ Neumeier, L.; Leib, M.; Hartmann, MJ (2013). "Transistor de fotón único en electrodinámica cuántica de circuitos". Cartas de revisión física . 111 (6): 063601. arXiv : 1211.7215 . Código bibliográfico : 2013PhRvL.111f3601N. doi : 10.1103/PhysRevLett.111.063601. PMID  23971573. S2CID  29256835.
  4. ^ Hong, año fiscal; Xiong, SJ (2008). "Transistor monofotónico mediante resonadores microtoroidales". Revisión física A. 78 (1): 013812. Código bibliográfico : 2008PhRvA..78a3812H. doi : 10.1103/PhysRevA.78.013812.
  5. ^ Molinero, lenguado (2010). "¿Son los transistores ópticos el siguiente paso lógico?" (PDF) . Fotónica de la naturaleza . 4 (1): 3–5. Código Bib : 2010NaPho...4....3M. doi : 10.1038/nphoton.2009.240 .
  6. ^ Chen, W.; Beck, KM; Bucker, R.; Gullans, M.; Lukin, MD; Tanji-Suzuki, H.; Vuletic, V. (2013). "Interruptor totalmente óptico y transistor activados por un fotón almacenado". Ciencia . 341 (6147): 768–70. arXiv : 1401.3194 . Código Bib : 2013 Ciencia... 341..768C. doi : 10.1126/ciencia.1238169. PMID  23828886. S2CID  6641361.
  7. ^ Clader, BD; Hendrickson, SM (2013). "Transistor totalmente óptico basado en microresonador". Revista de la Sociedad Óptica de América B. 30 (5): 1329. arXiv : 1210.0814 . Código Bib : 2013JOSAB..30.1329C. doi :10.1364/JOSAB.30.001329. S2CID  119220800.
  8. ^ Gorniaczyk, H.; Tresp, C.; Schmidt, J.; Fedder, H.; Hofferberth, S. (2014). "Transistor de fotón único mediado por interacciones interestatales Rydberg". Cartas de revisión física . 113 (5): 053601. arXiv : 1404.2876 . Código bibliográfico : 2014PhRvL.113e3601G. doi : 10.1103/PhysRevLett.113.053601. PMID  25126918. S2CID  20939989.
  9. ^ Tiarks, D.; Baur, S.; Schneider, K.; Durr, S.; Rempe, G. (2014). "Transistor de fotón único mediante resonancia de Förster". Cartas de revisión física . 113 (5): 053602. arXiv : 1404.3061 . Código bibliográfico : 2014PhRvL.113e3602T. doi : 10.1103/PhysRevLett.113.053602. PMID  25126919. S2CID  14870149.
  10. ^ Andreakou, P.; Poltavtsev, SV; Leonardo, JR; Calman, EV; Remeika, M.; Kuznetsova, YY; Butov, LV; Wilkes, J.; Hanson, M.; Gossard, AC (2014). "Transistor excitónico controlado ópticamente". Letras de Física Aplicada . 104 (9): 091101. arXiv : 1310.7842 . Código Bib : 2014ApPhL.104i1101A. doi : 10.1063/1.4866855. S2CID  5556763.
  11. ^ Kuznetsova, YY; Remeika, M.; Alta, AA; Hammack, AT; Butov, LV; Hanson, M.; Gossard, AC (2010). "Transistor excitónico totalmente óptico". Letras de Óptica . 35 (10): 1587–9. Código Bib : 2010OptL...35.1587K. doi :10.1364/OL.35.001587. PMID  20479817.
  12. ^ Ballarini, D.; De Giorgi, M.; Cancellieri, E.; Houdré, R.; Giacobino, E.; Cingolani, R.; Bramati, A.; Gigli, G.; Sanvitto, D. (2013). "Transistor de polariton totalmente óptico". Comunicaciones de la naturaleza . 4 : 1778. arXiv : 1201.4071 . Código Bib : 2013NatCo...4.1778B. doi : 10.1038/ncomms2734. PMID  23653190. S2CID  11160378.
  13. ^ Arkhipkin, VG; Myslivets, SA (2013). "Transistor totalmente óptico que utiliza una cavidad de cristal fotónico con un medio de ganancia Raman activo". Revisión física A. 88 (3): 033847. Código bibliográfico : 2013PhRvA..88c3847A. doi : 10.1103/PhysRevA.88.033847.
  14. ^ Jin, CY; Johne, R.; Swinkels, M.; Hoang, T.; Midolo, L.; van Veldhoven, PJ; Fiore, A. (noviembre de 2014). "Control no local ultrarrápido de emisiones espontáneas". Nanotecnología de la naturaleza . 9 (11): 886–890. arXiv : 1311.2233 . Código Bib : 2014NatNa...9..886J. doi :10.1038/nnano.2014.190. PMID  25218324. S2CID  28467862.
  15. ^ Piccione, B.; Cho, CH; Van Vugt, LK; Agarwal, R. (2012). "Conmutación activa totalmente óptica en nanocables semiconductores individuales". Nanotecnología de la naturaleza . 7 (10): 640–5. Código bibliográfico : 2012NatNa...7..640P. doi :10.1038/nnano.2012.144. PMID  22941404.
  16. ^ Varghese, teniente; Fan, L.; Wang, J.; Gan, F.; Wang, X.; Wirth, J.; Niu, B.; Tansarawiput, C.; Xuan, Y.; Weiner, AM; Qi, M. (2012). "Un transistor óptico de silicio". Fronteras en Óptica 2012/Ciencia del Láser XXVIII . vol. 2012. págs. FW6C.FW66. doi :10.1364/FIO.2012.FW6C.6. ISBN 978-1-55752-956-5. PMC  5269724 . PMID  28133636. {{cite book}}: |journal=ignorado ( ayuda )
  17. ^ Volz, J.; Rauschenbeutel, A. (2013). "Activación de un transistor óptico con un fotón". Ciencia . 341 (6147): 725–6. Código Bib : 2013 Ciencia... 341..725V. doi : 10.1126/ciencia.1242905. PMID  23950521. S2CID  35684657.
  18. ^ Buchmann, A.; Hoberg, C.; Novelli, F. (2022). "Un interruptor líquido ultrarrápido para radiación de terahercios". Fotónica APL . 7 (121302): 121302. Código bibliográfico : 2022APLP....7l1302B. doi : 10.1063/5.0130236 .