stringtranslate.com

Filtro adaptativo

Un filtro adaptativo es un sistema con un filtro lineal que tiene una función de transferencia controlada por parámetros variables y un medio para ajustar esos parámetros de acuerdo con un algoritmo de optimización . Debido a la complejidad de los algoritmos de optimización, casi todos los filtros adaptativos son filtros digitales . Se requieren filtros adaptativos para algunas aplicaciones porque algunos parámetros de la operación de procesamiento deseada (por ejemplo, las ubicaciones de las superficies reflectantes en un espacio reverberante ) no se conocen de antemano o están cambiando. El filtro adaptativo de circuito cerrado utiliza retroalimentación en forma de señal de error para refinar su función de transferencia.

En términos generales, el proceso adaptativo de circuito cerrado implica el uso de una función de costo , que es un criterio para el rendimiento óptimo del filtro, para alimentar un algoritmo, que determina cómo modificar la función de transferencia del filtro para minimizar el costo en la siguiente iteración. La función de coste más común es el cuadrado medio de la señal de error.

A medida que ha aumentado la potencia de los procesadores de señales digitales , los filtros adaptativos se han vuelto mucho más comunes y ahora se utilizan habitualmente en dispositivos como teléfonos móviles y otros dispositivos de comunicación, videocámaras y cámaras digitales, y equipos de seguimiento médico.

Aplicación de ejemplo

El registro de un latido del corazón (un ECG ) puede verse alterado por el ruido de la red eléctrica de CA. La frecuencia exacta de la potencia y sus armónicos pueden variar de un momento a otro.

Una forma de eliminar el ruido es filtrar la señal con un filtro de muesca en la frecuencia de la red eléctrica y sus alrededores, pero esto podría degradar excesivamente la calidad del ECG ya que el latido del corazón probablemente también tendría componentes de frecuencia en el rango rechazado.

Para evitar esta posible pérdida de información, se podría utilizar un filtro adaptativo. El filtro adaptativo recibiría información tanto del paciente como de la red eléctrica y, por lo tanto, podría rastrear la frecuencia real del ruido a medida que fluctúa y restar el ruido de la grabación. Una técnica adaptativa de este tipo generalmente permite un filtro con un rango de rechazo más pequeño, lo que significa, en este caso, que la calidad de la señal de salida es más precisa para fines médicos. [1] [2]

Diagrama de bloques

La idea detrás de un filtro adaptativo de circuito cerrado es que se ajusta un filtro variable hasta que se minimiza el error (la diferencia entre la salida del filtro y la señal deseada). El filtro de mínimos cuadrados medios (LMS) y el filtro de mínimos cuadrados recursivos (RLS) son tipos de filtro adaptativo.

Un diagrama de bloques de un filtro adaptativo con un bloque separado para el proceso de adaptación.
Filtro adaptativo. k = número de muestra, x = entrada de referencia, X = conjunto de valores recientes de x, d = entrada deseada, W = conjunto de coeficientes de filtro, ε = salida de error, f = respuesta de impulso del filtro, * = convolución, Σ = suma, cuadro superior = filtro lineal, cuadro inferior = algoritmo de adaptación
Un diagrama de bloques compacto de un filtro adaptativo sin un bloque separado para el proceso de adaptación.
Filtro adaptativo, representación compacta. k = número de muestra, x = entrada de referencia, d = entrada deseada, ε = salida de error, f = respuesta de impulso del filtro, Σ = suma, caja = filtro lineal y algoritmo de adaptación.

Hay dos señales de entrada al filtro adaptativo: y que a veces se denominan entrada primaria y entrada de referencia respectivamente. [3] El algoritmo de adaptación intenta filtrar la entrada de referencia en una réplica de la entrada deseada minimizando la señal residual . Cuando la adaptación tiene éxito, la salida del filtro es efectivamente una estimación de la señal deseada.

que incluye la señal deseada más interferencias no deseadas y
que incluye las señales que están correlacionadas con algunas de las interferencias no deseadas en .
k representa el número de muestra discreto.

El filtro está controlado por un conjunto de coeficientes o pesos L+1.

representa el conjunto o vector de pesos, que controlan el filtro en el tiempo de muestreo k.
donde se refiere al 'ésimo peso en el k'ésimo momento.
representa el cambio en las ponderaciones que se produce como resultado de los ajustes calculados en el momento de la muestra k.
Estos cambios se aplicarán después del tiempo de muestreo k y antes de que se utilicen en el tiempo de muestreo k+1.

La salida suele ser , pero podría ser o incluso podrían ser los coeficientes de filtro. [4] (Viuda)

Las señales de entrada se definen de la siguiente manera:

dónde:
g = la señal deseada,
g ' = una señal que está correlacionada con la señal deseada g ,
u = una señal no deseada que se agrega a g , pero no se correlaciona con g o g '
u ' = una señal que está correlacionada con la señal no deseada u , pero no correlacionada con g o g ' ,
v = una señal no deseada (normalmente ruido aleatorio) no correlacionada con g , g ' , u , u ' o v ' ,
v ' = una señal no deseada (normalmente ruido aleatorio) no correlacionada con g , g ' , u , u ' o v .

Las señales de salida se definen de la siguiente manera:

.
dónde:
= la salida del filtro si la entrada fuera solo g ' ,
= la salida del filtro si la entrada fuera solo u ' ,
= la salida del filtro si la entrada fuera solo v ' .

Filtro FIR de línea de retardo roscado

Si el filtro variable tiene una estructura de respuesta de impulso finito (FIR) de línea de retardo derivada , entonces la respuesta de impulso es igual a los coeficientes del filtro. La salida del filtro está dada por

donde se refiere al 'ésimo peso en el k'ésimo momento.

Caso ideal

En el caso ideal . Todas las señales no deseadas están representadas por . consiste enteramente en una señal correlacionada con la señal no deseada en .

La salida del filtro variable en el caso ideal es

.

La señal de error o función de costo es la diferencia entre y

. La señal deseada g k pasa sin ser modificada.

La señal de error se minimiza en el sentido cuadrático medio cuando se minimiza. En otras palabras, es la mejor estimación cuadrática media de . En el caso ideal, y , y todo lo que queda después de la resta es cuál es la señal deseada sin cambios con todas las señales no deseadas eliminadas.

Componentes de señal en la entrada de referencia.

En algunas situaciones, la entrada de referencia incluye componentes de la señal deseada. Esto significa g' ≠ 0.

En este caso no es posible una cancelación perfecta de las interferencias no deseadas, pero sí es posible mejorar la relación señal/interferencia. La salida será

. La señal deseada se modificará (normalmente disminuirá).

La relación señal de salida/interferencia tiene una fórmula simple denominada inversión de potencia .

.
dónde
= relación señal de salida/interferencia.
= relación señal de referencia/interferencia.
= frecuencia en el dominio z.

Esta fórmula significa que la relación señal de salida/interferencia a una frecuencia particular es la recíproca de la relación señal de referencia/interferencia. [5]

Ejemplo: un restaurante de comida rápida tiene una ventanilla para vehículos. Antes de llegar a la ventanilla, los clientes hacen su pedido hablando por un micrófono. El micrófono también capta el ruido del motor y del entorno. Este micrófono proporciona la señal principal. La potencia de la señal de la voz del cliente y la potencia del ruido del motor son iguales. A los empleados del restaurante les resulta difícil entender al cliente. Para reducir la cantidad de interferencia en el micrófono principal, se ubica un segundo micrófono donde está destinado a captar los sonidos del motor. También capta la voz del cliente. Este micrófono es la fuente de la señal de referencia. En este caso, el ruido del motor es 50 veces más potente que la voz del cliente. Una vez que el cancelador haya convergido, la relación señal primaria/interferencia mejorará de 1:1 a 50:1.

Combinador lineal adaptativo

Un diagrama de bloques de un combinador lineal adaptativo con un bloque separado para el proceso de adaptación.
Combinador lineal adaptativo que muestra el combinador y el proceso de adaptación. k = número de muestra, n = índice de variable de entrada, x = entradas de referencia, d = entrada deseada, W = conjunto de coeficientes de filtro, ε = salida de error, Σ = suma, cuadro superior = combinador lineal, cuadro inferior = algoritmo de adaptación.
Un diagrama de bloques compacto de un combinador lineal adaptativo sin un bloque separado para el proceso de adaptación.
Combinador lineal adaptativo, representación compacta. k = número de muestra, n = índice de variable de entrada, x = entradas de referencia, d = entrada deseada, ε = salida de error, Σ = sumatoria.

El combinador lineal adaptativo (ALC) se parece al filtro FIR de línea de retardo con tomas adaptativas, excepto que no se supone una relación entre los valores de X. Si los valores de X fueran de las salidas de una línea de retardo derivada, entonces la combinación de línea de retardo derivada y ALC comprendería un filtro adaptativo. Sin embargo, los valores de X podrían ser los valores de una matriz de píxeles. O podrían ser las salidas de múltiples líneas de retardo intervenidas. El ALC se utiliza como formador de haz adaptativo para conjuntos de hidrófonos o antenas.

donde se refiere al 'ésimo peso en el k'ésimo momento.

Algoritmo LMS

Si el filtro variable tiene una estructura FIR de línea de retardo aprovechada, entonces el algoritmo de actualización del LMS es especialmente simple. Normalmente, después de cada muestra, los coeficientes del filtro FIR se ajustan de la siguiente manera: [6]

para
μ se llama factor de convergencia .

El algoritmo LMS no requiere que los valores X tengan ninguna relación particular; por lo tanto, se puede utilizar para adaptar un combinador lineal y un filtro FIR. En este caso la fórmula de actualización se escribe como:

El efecto del algoritmo LMS es en cada momento, k, realizar un pequeño cambio en cada peso. La dirección del cambio es tal que disminuiría el error si se hubiera aplicado en el momento k. La magnitud del cambio en cada peso depende de μ, el valor de X asociado y el error en el tiempo k. Los pesos que hacen la mayor contribución a la producción, , son los que más cambian. Si el error es cero, entonces no debería haber cambios en los pesos. Si el valor asociado de X es cero, cambiar el peso no supone ninguna diferencia, por lo que no se modifica.

Convergencia

μ controla qué tan rápido y qué tan bien el algoritmo converge a los coeficientes de filtro óptimos. Si μ es demasiado grande, el algoritmo no convergerá. Si μ es demasiado pequeño, el algoritmo converge lentamente y es posible que no pueda rastrear las condiciones cambiantes. Si μ es grande pero no demasiado grande para evitar la convergencia, el algoritmo alcanza el estado estacionario rápidamente pero sobrepasa continuamente el vector de peso óptimo. A veces, μ se hace grande al principio para una convergencia rápida y luego se disminuye para minimizar el exceso.

Widrow y Stearns afirman en 1985 que no tienen conocimiento de una prueba de que el algoritmo LMS convergerá en todos los casos. [7]

Sin embargo, bajo ciertos supuestos sobre estacionariedad e independencia, se puede demostrar que el algoritmo convergerá si

dónde
= suma de toda la potencia de entrada
es el valor RMS de la 'ésima entrada

En el caso del filtro de línea de retardo con derivación, cada entrada tiene el mismo valor RMS porque simplemente son los mismos valores retardados. En este caso la potencia total es

dónde
es el valor RMS de , el flujo de entrada. [7]

Esto conduce a un algoritmo LMS normalizado:

en cuyo caso el criterio de convergencia pasa a ser: .

Filtros adaptativos no lineales

El objetivo de los filtros no lineales es superar las limitaciones de los modelos lineales. Existen algunos enfoques comúnmente utilizados: Volterra LMS, filtro adaptativo Kernel , filtro adaptativo Spline [8] y filtro adaptativo Urysohn. [9] [10] Muchos autores [11] incluyen también las redes neuronales en esta lista. La idea general detrás de Volterra LMS y Kernel LMS es reemplazar muestras de datos por diferentes expresiones algebraicas no lineales. Para Volterra LMS esta expresión es serie Volterra . En Spline Adaptive Filter, el modelo es una cascada de bloques dinámicos lineales y no linealidad estática, que se aproxima mediante splines. En Urysohn Adaptive Filter los términos lineales en un modelo

se reemplazan por funciones lineales por partes

que se identifican a partir de muestras de datos.

Aplicaciones de filtros adaptativos

Implementaciones de filtros

Ver también

Referencias

  1. ^ Thakor, Nevada; Zhu, Yi-Sheng (1 de agosto de 1991). "Aplicaciones del filtrado adaptativo al análisis de ECG: cancelación de ruido y detección de arritmias". Transacciones IEEE sobre ingeniería biomédica . 38 (8): 785–794. doi : 10.1109/10.83591. ISSN  0018-9294. PMID  1937512. S2CID  11271450.
  2. ^ Viuda, Bernard; Stearns, Samuel D. (1985). Procesamiento adaptativo de señales (1ª ed.). Prentice Hall. pag. 329.ISBN 978-0130040299.
  3. ^ Viuda p 304
  4. ^ Viuda p 212
  5. ^ Viuda p 313
  6. ^ Viuda pág. 100
  7. ^ ab Viuda p 103
  8. ^ Danilo Comminiello; José C. Príncipe (2018). Métodos de aprendizaje adaptativo para el modelado de sistemas no lineales . Elsevier Inc. ISBN 978-0-12-812976-0.
  9. ^ M. Poluektov y A. Polar. Filtro adaptativo Urysohn. 2019.
  10. ^ "Filtrado adaptativo no lineal". ezcodesample.com .
  11. ^ Weifeng Liu; José C. Príncipe; Simon Haykin (marzo de 2010). Filtrado adaptativo del kernel: una introducción completa (PDF) . Wiley. págs. 12-20. ISBN 978-0-470-44753-6.

Fuentes