stringtranslate.com

Media cuasi aritmética

En matemáticas y estadística , la media cuasi aritmética o media f generalizada o media de Kolmogorov-Nagumo-de Finetti [1] es una generalización de las medias más familiares , como la media aritmética y la media geométrica , utilizando una función . También se le llama media de Kolmogorov en honor al matemático soviético Andrey Kolmogorov . Es una generalización más amplia que la media generalizada regular .

Definición

Si f es una función que asigna un intervalo de la recta real a los números reales , y es continua e inyectiva , la media f de los números se define como , que también se puede escribir

Requerimos que f sea inyectiva para que exista la función inversa . Dado que se define en un intervalo, se encuentra dentro del dominio de .

Dado que f es inyectiva y continua, se deduce que f es una función estrictamente monótona y, por lo tanto, que la f -media no es mayor que el número más grande de la tupla ni menor que el número más pequeño en .

Ejemplos

Propiedades

Las siguientes propiedades son válidas para cualquier función única :

Simetría: el valor de no cambia si se permutan sus argumentos.

Idempotencia: para todo x , .

Monotonicidad : es monótono en cada uno de sus argumentos (ya que es monótono ).

Continuidad : es continua en cada uno de sus argumentos (ya que es continua).

Reemplazo : Se pueden promediar subconjuntos de elementos a priori, sin alterar la media, siempre que se mantenga la multiplicidad de elementos. Con él se sostiene:

Partición : el cálculo de la media se puede dividir en cálculos de subbloques de igual tamaño:

Autodistributividad : Para cualquier media cuasi aritmética de dos variables: .

Medialidad : Para cualquier media cuasi aritmética de dos variables: .

Equilibrio : Para cualquier media cuasi aritmética de dos variables: .

Teorema del límite central  : En condiciones de regularidad, para una muestra suficientemente grande,es aproximadamente normal. [2] Un resultado similar está disponible para las medias de Bajraktarević, que son generalizaciones de medias cuasi aritméticas. [3]

Invariancia de escala : la media cuasi aritmética es invariante con respecto a las compensaciones y la escala de :.

Caracterización

Hay varios conjuntos diferentes de propiedades que caracterizan la media cuasi aritmética (es decir, cada función que satisface estas propiedades es una f -media para alguna función f ).

Homogeneidad

Las medias suelen ser homogéneas , pero para la mayoría de las funciones , la media f no lo es. De hecho, las únicas medias cuasi aritméticas homogéneas son las medias de potencia (incluida la media geométrica ); ver Hardy – Littlewood – Pólya, página 68.

La propiedad de homogeneidad se puede lograr normalizando los valores de entrada por alguna media (homogénea) .

Sin embargo, esta modificación puede violar la monotonicidad y la propiedad de partición de la media.

Generalizaciones

Considere una función estrictamente convexa de tipo Legendre . Entonces, el mapa de gradiente es globalmente invertible y la media cuasi aritmética multivariada ponderada [8] se define por , donde es un vector de peso normalizado ( por defecto para un promedio equilibrado). De la dualidad convexa, obtenemos una media cuasi aritmética dual asociada a la media cuasi aritmética . Por ejemplo, tomemos una matriz simétrica definida positiva. El par de medias cuasi-aritméticas matriciales produce la media armónica matricial:

Ver también

Referencias

  1. ^ Nielsen, Frank; Nock, Richard (junio de 2017). "Generalización de divergencias sesgadas de Jensen y divergencias de Bregman con convexidad comparativa". Cartas de procesamiento de señales IEEE . 24 (8): 2. arXiv : 1702.04877 . Código Bib : 2017ISPL...24.1123N. doi :10.1109/LSP.2017.2712195. S2CID  31899023.
  2. ^ de Carvalho, Miguel (2016). "Quiero decir, ¿qué quieres decir?". El estadístico estadounidense . 70 (3): 764‒776. doi :10.1080/00031305.2016.1148632. hdl : 20.500.11820/fd7a8991-69a4-4fe5-876f-abcd2957a88c . S2CID  219595024.
  3. ^ Barczy, M. y Burai, P. (2019). "Teoremas de límite para medias del cociente de Bajraktarević y Cauchy de variables aleatorias independientes distribuidas idénticamente". arXiv : 1909.02968 [matemáticas.PR].
  4. ^ ab Aczél, J.; Dhombres, JG (1989). Ecuaciones funcionales en varias variables. Con aplicaciones a las matemáticas, la teoría de la información y a las ciencias naturales y sociales. Enciclopedia de Matemáticas y sus Aplicaciones, 31 . Cambridge: Universidad de Cambridge. Prensa.
  5. ^ Grudkin, Antón (2019). "Caracterización de la media cuasi aritmética". Intercambio de pila matemática .
  6. ^ Aumann, Georg (1937). "Vollkommene Funktionalmittel und gewisse Kegelschnitteigenschaften". Journal für die reine und angewandte Mathematik . 1937 (176): 49–55. doi :10.1515/crll.1937.176.49. S2CID  115392661.
  7. ^ Aumann, Georg (1934). "Grundlegung der Theorie der analytischen Analytische Mittelwerte". Sitzungsberichte der Bayerischen Akademie der Wissenschaften : 45–81.
  8. ^ Nielsen, Frank (2023). "Más allá de las medias cuasiaritméticas escalares: promedios cuasiaritméticos y mezclas cuasiaritméticas en geometría de la información". arXiv : 2301.10980 [cs.IT].