Motores de Fórmula 1

Esto ha llevado a la utilización de diferentes tipos de propulsores desde 1947, época en la que la actual Federación Internacional del Automóvil (FIA) se reunió para concretar las reglas que pilotos y monoplazas debían obedecer.

Para operar el motor a altas velocidades, la carrera debe ser relativamente corta para evitar fallos catastróficos, por lo general de la biela que se encuentra bajo grandes esfuerzos a estas velocidades.

Tener una carrera corta significa que se requiere un diámetro relativamente grande para alcanzar un cilindrada total de 1,6 litros.

El desarrollo en el diseño también permite unos extremos de biela y unos cojinetes principales más angostos.

Esto permite mayores rpm con menos acumulación de calor perjudicial para el rodamiento.

Esto ocurre una vez para cada uno de los cuatro tiempos del ciclo: una admisión (abajo), una compresión (arriba), una explosión (encendido-abajo), un escape (arriba).

La aceleración máxima del pistón se produce en el punto muerto superior y está en torno de los 95.000 m/s2, aproximadamente 10.000 veces la gravedad estándar (10,000 G).

La aparición del Cosworth DFV de producción estándar en 1967 hizo posible que pequeñas escuderías se unieran a la serie con un chasis diseñado internamente.

Tras estos acontecimientos, el propietario de Brabham Bernie Ecclestone consiguió que BMW fabricara un motor cuatro en línea turboalimentado desde 1982 en adelante.

A mediados de 1985, todos los equipos que participaban en la competición montaban un motor turbo en su automóvil.

Siguiendo las experiencias en Indianápolis, en 1971 Lotus realizó algunos experimentos sin éxito con una turbina Pratt & Whitney instalada en un chasis con tracción 4WD.

Tras la dominación del turbo, la inducción forzada se permitió durante dos temporadas antes de su eventual prohibición.

Las regulaciones de la FIA limitaron la presión que éste ejercía, a 4 bar en calificación en 1987 para los motores 1,5 L turbo; y permitió especificaciones para los motores aspirados más grande llegando a los 3,5 L de capacidad.

El único motor de aspiración natural, el Ford Cosworth DFZ 3.5 L V8 derivado del DFV, que producía 575 CV (429 kW) en el Tyrrell, Lola, AGS, March y Coloni.

La temporada de Fórmula 1 de 1988 estuvo nuevamente dominada por motores turbo a 2.5 bar y Honda con su RA168E V6 turbo produciendo 640 CV (477 kW) a 12.500 rpm en calificación, esta vez con los pilotos de McLaren Ayrton Senna y Alain Prost ganando todos los grandes premios, excepto uno ganado por Ferrari con su 033E V6, con aproximadamente 650 CV (485 kW) a 12.800 rpm en calificación.

Justo detrás, Ford presentó su DFR 3,5 L V8 produciendo 620 CV (462 kW) a 11.000 rpm para Benetton, y el Megatron BMW M12/13 con sus 640 CV (477 kW) todavía impulsaba a Arrows por delante del Lotus-Honda.

Ferrari estaba detrás con su Tipo 037, un nuevo V12 de 65° que proporciona 710 CV (529 kW) a 13.800 rpm que también impulsa a Minardi, justo delante del Ford HBA4 /5/6 en los coches de Benetton y Jordan.

Yamaha dio su OX99 V12 70° con sus 660 CV (492 kW) a Brabham, mientras que los motores Lamborghini fueron utilizados por Modena y Ligier.

Ilmor presentó su LH10 V10, con 680 CV (507 kW) a 13.000 rpm, que acabaría convirtiéndose en Mercedes con Leyton House, y Porsche obtuvo un poco de éxito con su 3512 V12 para Footwork Arrows; el resto de las escuderías utilizarían los motores Ford DFR.

Contrariamente, hubo casos en los que el rendimiento del coche mejoró, como ocurrió en 2006 con el equipo Toyota F1.

La especificación del motor se congeló en 2007 para mantener bajos los costos de desarrollo.

Cuatro equipos lo usaron en algún momento de la temporada, más concretamente Ferrari, Renault, BMW y McLaren.

Aunque KERS todavía era legal en la F1 en la temporada 2010, todos los equipos acordaron no usarlo y un año después, en la temporada 2011, el KERS regresó a la competición junto con una de las innovaciones más importantes de los últimos tiempos y que aún sigue vigente en la Fórmula 1.

Hablamos del DRS (Drag Reduction System) Se trata de un alerón móvil que se abre en determinadas zonas del circuito (generalmente rectas) y que tiene como objetivo reducir momentáneamente la carga aerodinámica para alcanzar una velocidad mayor y generar un mayor número de adelantamientos durante la carrera.

[2]​ De forma general, estos propulsores están formados por un motor de combustión interna o Internal Combustion Engine (ICE), que ofrece entre 750 y 800 CV y una parte eléctrica conocida como Energy Recovery System (ERS) similar al antiguo sistema eléctrico conocido como Kinetic Energy Recovery System (KERS).

Por otra parte, la FIA no limita la cantidad de energía eléctrica que puede ser recuperada con este sistema.

Sin duda, el equipo nipón ha sido el que más ha sufrido esta nueva etapa de la Fórmula 1, dejando en el dique seco durante estos tres año al piloto español Fernando Alonso, uno de los protagonistas más dañados durante la existencia del binomio McLaren-Honda.

Durante los anteriores años, el peso conjunto entre piloto y monoplaza no podía exceder los 734 kg.

[7]​ La aerodinámica merece especial mención, y es que, la nueva normativa aerodinámica para la temporada 2019, significativos serán los cambios que sufran los monoplazas el próximo curso para solventar el mayor problema de la Fórmula 1 actual, la ausencia excesiva de adelantamientos.

También se presentó una propuesta adicional para permitir que los monoplazas contaran con tracción a las cuatro ruedas, siendo el eje delantero impulsado por el MGU-K, algo novedoso teniendo en cuenta que actualmente toda la energía se transmite al eje trasero.

Ferrari 625 de 1954.
Ford-Cosworth DFV de 1978.
Honda RA168E de 1988.
Ferrari Tipo 035/5 de 1989.
BMW E41 de 2000.
Renault RS27 de 2007.
Honda RA616H de 2016.