El diagnóstico a bordo ( OBD ) es un término que se refiere a la capacidad de autodiagnóstico y generación de informes de un vehículo. En los Estados Unidos, esta capacidad es un requisito para cumplir con las normas federales sobre emisiones y detectar fallas que puedan aumentar las emisiones del tubo de escape del vehículo a más del 150 % del estándar para el cual fue certificado originalmente. [1] [2]
Los sistemas OBD permiten al propietario del vehículo o al técnico de reparaciones acceder al estado de los distintos subsistemas del vehículo. La cantidad de información de diagnóstico disponible a través de OBD ha variado ampliamente desde su introducción a principios de la década de 1980 con las versiones de computadoras de a bordo de los vehículos. Las primeras versiones de OBD simplemente iluminaban una luz indicadora si se detectaba un problema, pero no proporcionaban ninguna información sobre la naturaleza del problema. Las implementaciones modernas de OBD utilizan un puerto de comunicaciones digitales estandarizado para proporcionar datos en tiempo real y códigos de diagnóstico de problemas que permiten identificar rápidamente las fallas dentro del vehículo.
El ALDL (Assembly Line Diagnostic Link) de GM se considera a veces un predecesor o una versión patentada del fabricante de un sistema de diagnóstico OBD-I que comenzó en 1981. Esta interfaz se fabricó en diferentes variedades y se modificó con los módulos de control del tren motriz (también conocidos como PCM, ECM, ECU). Las diferentes versiones tenían ligeras diferencias en la distribución de pines y las velocidades de transmisión. Las versiones anteriores utilizaban una velocidad de transmisión de 160 baudios, mientras que las versiones posteriores llegaban hasta los 8192 baudios y utilizaban comunicaciones bidireccionales con el PCM. [15] [16]
La intención regulatoria del OBD-I era alentar a los fabricantes de automóviles a diseñar sistemas de control de emisiones confiables que siguieran siendo efectivos durante la "vida útil" del vehículo. [17] La esperanza era que al obligar a realizar pruebas anuales de emisiones en California a partir de 1988, [18] y negar la matriculación a los vehículos que no las aprobaran, los conductores tenderían a comprar vehículos que pasarían la prueba con mayor fiabilidad. El OBD-I no tuvo mucho éxito, ya que los medios para informar sobre la información de diagnóstico específica de las emisiones no estaban estandarizados. Las dificultades técnicas para obtener información estandarizada y confiable sobre las emisiones de todos los vehículos llevaron a una incapacidad para implementar el programa de pruebas anuales de manera efectiva. [19]
Los códigos de diagnóstico de problemas (DTC) de los vehículos OBD-I se pueden encontrar normalmente sin una herramienta de escaneo costosa. Cada fabricante utiliza su propio conector de enlace de diagnóstico (DLC), ubicación del DLC, definiciones de DTC y procedimiento para leer los DTC del vehículo. Los DTC de los vehículos OBD-I se leen a menudo a través de los patrones de parpadeo de la luz de "Check Engine" (CEL) o la luz de "Service Engine Soon" (SES). Al conectar ciertos pines del conector de diagnóstico, la luz de "Check Engine" parpadeará un número de dos dígitos que corresponde a una condición de error específica. Sin embargo, los DTC de algunos vehículos OBD-I se interpretan de diferentes maneras. Los vehículos Cadillac con inyección de combustible a gasolina están equipados con diagnósticos a bordo reales , que proporcionan códigos de problemas, pruebas de actuadores y datos de sensores a través de la nueva pantalla de control climático electrónico digital.
Si se mantienen presionados los botones "Off" y "Warmer" durante varios segundos, se activa el modo de diagnóstico sin necesidad de una herramienta de escaneo externa. Algunas computadoras de motor Honda están equipadas con LED que se encienden en un patrón específico para indicar el DTC. General Motors, algunos vehículos Ford 1989-1995 (DCL) y algunos vehículos Toyota/Lexus 1989-1995 tienen disponible un flujo de datos de sensores en vivo; sin embargo, muchos otros vehículos equipados con OBD-I no lo tienen. Los vehículos OBD-I tienen menos DTC disponibles que los vehículos equipados con OBD-II.
OBD 1.5 se refiere a una implementación parcial de OBD-II que General Motors utilizó en algunos vehículos en 1994, 1995 y 1996. (GM no utilizó el término OBD 1.5 en la documentación de estos vehículos; simplemente tienen una sección OBD y una sección OBD-II en el manual de servicio).
Por ejemplo, los modelos Corvettes del año 1994-1995 tienen un sensor de oxígeno post-catalizador (aunque tienen dos convertidores catalíticos ) y tienen implementado un subconjunto de los códigos OBD-II. [20]
Este sistema híbrido estuvo presente en los automóviles GM B-body (Chevrolet Caprice, Impala y Buick Roadmaster) para los años modelo 1994-1995, automóviles H-body para 1994-1995, automóviles W-body (Buick Regal, Chevrolet Lumina (solo para 1995), Chevrolet Monte Carlo (solo 1995), Pontiac Grand Prix, Oldsmobile Cutlass Supreme) para 1994-1995, L-body (Chevrolet Beretta/Corsica) para 1994-1995, Y-body (Chevrolet Corvette) para 1994-1995, en el F-body (Chevrolet Camaro y Pontiac Firebird) para 1995 y en el J-Body (Chevrolet Cavalier y Pontiac Sunfire) y N-Body (Buick Skylark, Oldsmobile Achieva, Pontiac Grand Am) para 1995 y 1996 y también para América del Norte entregados entre 1994 y 1995 vehículos Saab con el motor 2.3 de aspiración natural.
El pinout para la conexión ALDL en estos coches es el siguiente:
Para las conexiones ALDL, el pin 9 es el flujo de datos, los pines 4 y 5 son tierra y el pin 16 es el voltaje de la batería.
Se requiere una herramienta de escaneo compatible con OBD 1.5 para leer los códigos generados por OBD 1.5.
En este conector también se encuentran disponibles circuitos de control y diagnóstico adicionales específicos del vehículo. Por ejemplo, en el Corvette hay interfaces para el flujo de datos en serie de clase 2 del PCM, el terminal de diagnóstico del CCM, el flujo de datos de radio, el sistema de airbag, el sistema de control de conducción selectiva, el sistema de advertencia de baja presión de los neumáticos y el sistema de entrada pasiva sin llave. [21]
Desde el año 95 también se utiliza un OBD 1.5 en el Ford Scorpio. [22]
El OBD-II es una mejora con respecto al OBD-I tanto en capacidad como en estandarización. El estándar OBD-II especifica el tipo de conector de diagnóstico y su distribución de pines, los protocolos de señalización eléctrica disponibles y el formato de mensajes. También proporciona una lista de candidatos de parámetros del vehículo para monitorear junto con la forma de codificar los datos de cada uno. Hay un pin en el conector que proporciona energía para la herramienta de escaneo desde la batería del vehículo, lo que elimina la necesidad de conectar una herramienta de escaneo a una fuente de energía por separado. Sin embargo, algunos técnicos aún podrían conectar la herramienta de escaneo a una fuente de energía auxiliar para proteger los datos en el caso inusual de que un vehículo experimente una pérdida de energía eléctrica debido a un mal funcionamiento. Finalmente, el estándar OBD-II proporciona una lista extensible de DTC. Como resultado de esta estandarización, un solo dispositivo puede consultar la(s) computadora(s) de a bordo en cualquier vehículo. Este OBD-II vino en dos modelos OBD-IIA y OBD-IIB. La estandarización del OBD-II fue impulsada por los requisitos de emisiones y, aunque solo se requiere que se transmitan a través de él los códigos y datos relacionados con las emisiones, la mayoría de los fabricantes han hecho que el conector de enlace de datos OBD-II sea el único en el vehículo a través del cual se diagnostican y programan todos los sistemas. Los códigos de diagnóstico de problemas OBD-II tienen 4 dígitos, precedidos por una letra: P para tren motriz (motor y transmisión), B para carrocería, C para chasis y U para red.
La especificación OBD-II prevé una interfaz de hardware estandarizada: el conector hembra J1962 de 16 pines (2x8) , donde el tipo A se utiliza para vehículos de 12 voltios y el tipo B para vehículos de 24 voltios. A diferencia del conector OBD-I, que a veces se encontraba debajo del capó del vehículo, el conector OBD-II debe estar a menos de 2 pies (0,61 m) del volante (a menos que el fabricante solicite una exención, en cuyo caso sigue estando en algún lugar al alcance del conductor).
SAE J1962 define la distribución de pines del conector como:
La asignación de pines no especificados queda a discreción del fabricante del vehículo. [24]
Las normas europeas de diagnóstico a bordo (EOBD) son el equivalente europeo del OBD-II y se aplican a todos los turismos de la categoría M1 (con no más de 8 asientos para pasajeros y un peso bruto del vehículo de 2500 kg (5500 lb) o menos) matriculados por primera vez en los estados miembros de la UE desde el 1 de enero de 2001 para los turismos con motor de gasolina y desde el 1 de enero de 2004 para los turismos con motor diésel . [25]
En el caso de los modelos de nueva introducción, la normativa entró en vigor un año antes: el 1 de enero de 2000 para los
modelos de gasolina y el 1 de enero de 2003 para los modelos diésel. En el caso de los turismos con un peso bruto vehicular superior a 2500 kg y de los vehículos comerciales ligeros, la normativa entró en vigor el 1 de enero de 2002 para los modelos de gasolina y el 1 de enero de 2007 para los modelos diésel.
La implementación técnica de EOBD es esencialmente la misma que la de OBD-II, con el mismo conector de enlace de diagnóstico SAE J1962 y los mismos protocolos de señal utilizados.
Con los estándares de emisiones Euro V y Euro VI, los umbrales de emisiones EOBD son más bajos que los anteriores Euro III y IV.
Cada uno de los códigos de falla EOBD consta de cinco caracteres: una letra, seguida de cuatro números. [26] La letra se refiere al sistema que se está interrogando, por ejemplo, Pxxxx se referiría al sistema de tren motriz. El siguiente carácter sería un 0 si cumple con el estándar EOBD. Por lo tanto, debería verse como P0xxx.
El siguiente caracter haría referencia al subsistema.
Los dos caracteres siguientes harían referencia a la falla individual dentro de cada subsistema. [27]
El término "EOBD2" es una expresión de marketing que utilizan algunos fabricantes de vehículos para referirse a funciones específicas del fabricante que en realidad no forman parte del estándar OBD o EOBD. En este caso, "E" significa Enhanced (mejorado).
JOBD es una versión de OBD-II para vehículos vendidos en Japón.
La norma ADR 79/01 (Vehicle Standard ( Australian Design Rule 79/01 – Emission Control for Light Vehicles) 2005) es el equivalente australiano de OBD-II . Se aplica a todos los vehículos de las categorías M1 y N1 con un peso bruto vehicular nominal de 3500 kg (7700 lb) o menos, matriculados como nuevos en Australia y producidos desde el 1 de enero de 2006 para automóviles con motor de gasolina y desde el 1 de enero de 2007 para automóviles con motor diésel . [28]
En el caso de los nuevos modelos, la normativa entró en vigor un año antes: el 1 de enero de 2005 para los vehículos de gasolina y el 1 de enero de 2006 para los vehículos diésel. La norma ADR 79/01 se complementó con la norma ADR 79/02, que impuso restricciones de emisiones más estrictas, aplicables a todos los vehículos de las clases M1 y N1 con un peso bruto vehicular de 3500 kg o menos, a partir del 1 de julio de 2008, para los nuevos modelos, y del 1 de julio de 2010, para todos los modelos. [29]
La implementación técnica de este estándar es esencialmente la misma que la de OBD-II, utilizándose el mismo conector de enlace de diagnóstico SAE J1962 y los mismos protocolos de señal.
En América del Norte, EMD y EMD+ son sistemas de diagnóstico a bordo que se utilizaron en vehículos con un peso bruto vehicular de 14 000 lb (6400 kg) o más entre los años modelo 2007 y 2012 si esos vehículos no implementaban OBD-II. EMD se utilizó en vehículos de emisiones de California entre los años modelo 2007 y 2009 que aún no tenían OBD-II. EMD era necesario para monitorear el suministro de combustible, la recirculación de gases de escape, el filtro de partículas diésel (en motores diésel) y las entradas y salidas del módulo de control del tren motriz relacionadas con las emisiones para la continuidad del circuito, la racionalidad de los datos y la funcionalidad de salida. EMD+ se utilizó en vehículos con motor de gasolina de California y federales del año modelo 2010-2012 con un peso bruto vehicular de más de 14 000 lb (6400 kg), agregó la capacidad de monitorear el rendimiento del catalizador de óxido de nitrógeno. EMD y EMD+ son similares a OBD-I en lógica pero utilizan el mismo conector de datos SAE J1962 y bus CAN que los sistemas OBD-II. [8]
Se permiten cinco protocolos de señalización con la interfaz OBD-II. La mayoría de los vehículos implementan solo uno de los protocolos. A menudo es posible deducir el protocolo utilizado en función de los pines presentes en el conector J1962: [30]
Todos los pines OBD-II utilizan el mismo conector, pero se utilizan pines diferentes con la excepción del pin 4 (tierra de la batería) y el pin 16 (positivo de la batería).
OBD-II proporciona acceso a los datos de la unidad de control del motor (ECU) y ofrece una valiosa fuente de información para la resolución de problemas en el interior de un vehículo. La norma SAE J1979 define un método para solicitar diversos datos de diagnóstico y una lista de parámetros estándar que pueden estar disponibles en la ECU. Los diversos parámetros disponibles se abordan mediante "números de identificación de parámetros" o PID , que se definen en J1979. Para obtener una lista de PID básicos, sus definiciones y la fórmula para convertir la salida OBD-II sin procesar en unidades de diagnóstico significativas, consulte PID OBD-II . Los fabricantes no están obligados a implementar todos los PID enumerados en J1979 y se les permite incluir PID propietarios que no estén enumerados. El sistema de solicitud de PID y recuperación de datos brinda acceso a datos de rendimiento en tiempo real, así como a DTC marcados. Para obtener una lista de DTC OBD-II genéricos sugeridos por la SAE, consulte la Tabla de códigos OBD-II . Los fabricantes individuales a menudo mejoran el conjunto de códigos OBD-II con DTC propietarios adicionales.
A continuación se presenta una introducción básica al protocolo de comunicación OBD según la norma ISO 15031. En la norma SAE J1979, estos "modos" pasaron a denominarse "servicios" a partir de 2003.
$01
muestra los datos actuales del sensor en tiempo real de los PID ("ID de parámetro"). Consulte PID OBD-II n.° Servicio_01 para obtener una lista completa.$02
hace que los datos de Freeze Frame sean accesibles a través de los mismos PID. [33] Consulte PID OBD-II n.° Servicio_02 para obtener una lista.$03
enumera los códigos de diagnóstico de problemas "confirmados" relacionados con las emisiones almacenados. Muestra códigos numéricos de 4 dígitos que identifican las fallas o los asigna a una letra (P, B, U, C) más 4 dígitos. Consulte #OBD-II_diagnostic_trouble_codes.$04
se utiliza para borrar la información de diagnóstico relacionada con las emisiones. Esto incluye borrar los DTC pendientes/confirmados almacenados y los datos de Freeze Frame. [34]$05
muestra la pantalla del monitor del sensor de oxígeno y los resultados de las pruebas recopiladas sobre el sensor de oxígeno. Hay diez números disponibles para el diagnóstico:$01
Voltaje umbral del sensor de O2 de mezcla rica a pobre$02
Voltaje de umbral del sensor de O2 de mezcla pobre a rica$03
Umbral de voltaje bajo del sensor para la medición del tiempo de conmutación$04
Umbral de voltaje alto del sensor para la medición del tiempo de conmutación$05
Tiempo de cambio de Rich a Lean en ms$06
Tiempo de conmutación de Lean-to-Rich en ms$07
Voltaje mínimo para prueba$08
Voltaje máximo para prueba$09
Tiempo entre transiciones de voltaje en ms$06
es una solicitud de resultados de pruebas de monitoreo a bordo para sistemas monitoreados de manera continua y no continua. Normalmente, hay un valor mínimo, un valor máximo y un valor actual para cada monitor no continuo.$07
es una solicitud de códigos de diagnóstico de problemas relacionados con las emisiones detectados durante el ciclo de conducción actual o el último ciclo de conducción completado. Permite que el equipo de prueba externo obtenga códigos de diagnóstico de problemas "pendientes" detectados durante el ciclo de conducción actual o el último ciclo de conducción completado para componentes/sistemas relacionados con las emisiones. Los técnicos de servicio utilizan esto después de una reparación del vehículo y después de borrar la información de diagnóstico para ver los resultados de la prueba después de un solo ciclo de conducción para determinar si la reparación ha solucionado el problema. Consulte #OBD-II_diagnostic_trouble_codes.$08
podría permitir que el dispositivo de prueba externo controle el funcionamiento de un sistema, prueba o componente interno.$09
se utiliza para recuperar información del vehículo. Entre otros, se encuentra disponible la siguiente información:$0A
enumera los códigos de diagnóstico de problemas "permanentes" relacionados con las emisiones almacenados. Según CARB, cualquier código de diagnóstico de problemas que encienda la luz de advertencia MIL y se almacene en la memoria no volátil se registrará como un código de falla permanente. Consulte #OBD-II_diagnostic_trouble_codes.Existen varias herramientas que se conectan al conector OBD para acceder a las funciones OBD. Estas herramientas van desde herramientas genéricas simples para el consumidor hasta herramientas de concesionarios OEM altamente sofisticadas y dispositivos telemáticos para vehículos.
Está disponible una gama de herramientas de escaneo portátiles y robustas.
Las aplicaciones para dispositivos móviles permiten que dispositivos móviles como teléfonos celulares y tabletas muestren y manipulen los datos OBD-II a los que se accede a través de cables adaptadores USB o adaptadores Bluetooth enchufados al conector OBD II del automóvil. Los dispositivos más nuevos en el mercado están equipados con sensores GPS y la capacidad de transmitir la ubicación del vehículo y los datos de diagnóstico a través de una red celular. Por lo tanto, los dispositivos OBD-II modernos se pueden utilizar hoy en día, por ejemplo, para localizar vehículos, monitorear el comportamiento de conducción además de leer códigos de diagnóstico de problemas (DTC). Incluso los dispositivos más avanzados permiten a los usuarios restablecer los códigos DTC del motor, apagando efectivamente las luces del motor en el tablero; sin embargo, restablecer los códigos no soluciona los problemas subyacentes y, en el peor de los casos, puede incluso provocar la rotura del motor cuando el problema de origen es grave y no se atiende durante largos períodos. [36] [37]
Un paquete de software OBD-II cuando se instala en una computadora ( Windows , Mac o Linux ) puede ayudar a diagnosticar el sistema a bordo, leer y borrar DTC, apagar la MIL, mostrar datos en tiempo real y medir el ahorro de combustible del vehículo. [38]
Para utilizar el software OBD-II, es necesario tener un adaptador OBD-II (generalmente con Bluetooth , Wi-Fi o USB ) [39] conectado al puerto OBD-II para permitir que el vehículo se conecte con la computadora donde está instalado el software. [40]
Una herramienta de análisis OBD basada en PC que convierte las señales OBD-II en datos en serie (USB o puerto serie) estándar para PC o Mac. Luego, el software decodifica los datos recibidos en una pantalla visual. Muchas interfaces populares se basan en los circuitos integrados de interpretación OBD ELM327 o STN [41] , los cuales leen los cinco protocolos OBD-II genéricos. Algunos adaptadores ahora usan la API J2534, lo que les permite acceder a los protocolos OBD-II tanto para automóviles como para camiones.
Además de las funciones de una herramienta de escaneo portátil, las herramientas basadas en PC generalmente ofrecen:
El grado en que una herramienta de PC puede acceder a los diagnósticos de la ECU específicos del fabricante o del vehículo varía entre los productos de software [42], al igual que entre los escáneres portátiles.
Los registradores de datos están diseñados para capturar datos del vehículo mientras éste está en funcionamiento normal, para su posterior análisis.
Los usos del registro de datos incluyen:
El análisis de los datos de la caja negra del vehículo puede realizarse periódicamente, transmitirse automáticamente de forma inalámbrica a un tercero o recuperarse para un análisis forense después de un evento como un accidente, una infracción de tránsito o una falla mecánica.
En los Estados Unidos, muchos estados ahora utilizan pruebas OBD-II en lugar de pruebas de escape en vehículos que cumplen con los requisitos OBD-II (modelos 1996 y posteriores). Dado que OBD-II almacena códigos de problemas para equipos de emisiones, la computadora de prueba puede consultar la computadora de a bordo del vehículo y verificar que no haya códigos de problemas relacionados con las emisiones y que el vehículo cumpla con los estándares de emisiones para el año del modelo en que fue fabricado.
En los Países Bajos, los vehículos fabricados a partir de 2006 deben someterse a una comprobación anual de emisiones EOBD. [46]
La instrumentación complementaria del vehículo para el conductor es la instrumentación instalada en un vehículo además de la proporcionada por el fabricante del vehículo y destinada a ser mostrada al conductor durante el funcionamiento normal. Esto se opone a los escáneres que se utilizan principalmente para el diagnóstico activo de fallas , el ajuste o el registro de datos ocultos.
Los entusiastas de los automóviles tradicionalmente han instalado indicadores adicionales, como el vacío del colector, la corriente de la batería, etc. La interfaz estándar OBD ha permitido que una nueva generación de instrumentación para entusiastas acceda a la gama completa de datos del vehículo utilizados para diagnósticos y datos derivados, como el ahorro de combustible instantáneo.
La instrumentación puede adoptar la forma de ordenadores de viaje dedicados , [47] ordenadores de automóvil o interfaces para PDA , [48] teléfonos inteligentes o una unidad de navegación Garmin .
Como una computadora portátil es esencialmente una PC, se puede cargar el mismo software que para las herramientas de escaneo basadas en PC y viceversa, por lo que la distinción solo está en el motivo de uso del software.
Estos sistemas para entusiastas también pueden incluir algunas funcionalidades similares a las de otras herramientas de escaneo.
La información OBD II es comúnmente utilizada por dispositivos telemáticos de vehículos que realizan seguimiento de flotas, monitorean la eficiencia del combustible, previenen la conducción insegura, así como también para diagnósticos remotos y para seguros de pago por conducción.
Aunque originalmente no estaba destinado a los fines antes mencionados, los datos OBD II comúnmente admitidos, como la velocidad del vehículo, las RPM y el nivel de combustible, permiten que los dispositivos de seguimiento de flotas basados en GPS controlen los tiempos de inactividad, la velocidad y el exceso de revoluciones del vehículo. Al controlar los DTC OBD II, una empresa puede saber inmediatamente si uno de sus vehículos tiene un problema de motor y, al interpretar el código, la naturaleza del problema. Se puede utilizar para detectar la conducción imprudente en tiempo real en función de los datos de los sensores proporcionados a través del puerto OBD. [49] Esta detección se realiza añadiendo un procesador de eventos complejos (CEP) al backend y a la interfaz del cliente. El OBD II también se controla para bloquear los teléfonos móviles durante la conducción y para registrar los datos del viaje con fines de seguro. [50]
Los códigos de diagnóstico de problemas OBD-II ( DTC ) [51] [52] tienen cinco caracteres: la primera letra indica una categoría y las cuatro restantes son un número hexadecimal . [53]
El primer carácter que representa la categoría sólo puede ser una de las cuatro letras siguientes, que se indican aquí con sus significados asociados. (Esta restricción en el número se debe a que sólo se utilizan dos bits de memoria para indicar la categoría cuando se almacenan y transmiten los DTC). [53]
El segundo carácter es un número en el rango de 0 a 3. (Esta restricción se debe nuevamente a limitaciones de almacenamiento de memoria). [53]
El tercer carácter puede indicar un sistema particular del vehículo al que se relaciona la falla. [51]
Finalmente, el cuarto y quinto caracteres definen el problema exacto detectado.
Investigadores de la Universidad de Washington y la Universidad de California examinaron la seguridad en torno al OBD y descubrieron que podían obtener el control sobre muchos componentes del vehículo a través de la interfaz. Además, pudieron cargar nuevo firmware en las unidades de control del motor . Su conclusión es que los sistemas integrados en los vehículos no están diseñados teniendo en cuenta la seguridad. [54] [55] [56]
Se han recibido informes de ladrones que utilizan dispositivos especializados de reprogramación OBD para poder robar coches sin necesidad de utilizar una llave. [57] Las principales causas de esta vulnerabilidad residen en la tendencia de los fabricantes de vehículos a ampliar el bus para fines distintos de aquellos para los que fue diseñado, y en la falta de autenticación y autorización en las especificaciones OBD, que en cambio se basan en gran medida en la seguridad a través de la oscuridad . [58]
{{cite magazine}}
: Requiere citar revista |magazine=
( ayuda ){{cite book}}
: Mantenimiento CS1: fecha y año ( enlace )