En matemáticas , un semigrupo nulo (también llamado semigrupo cero ) es un semigrupo con un elemento absorbente , llamado cero , en el que el producto de dos elementos cualesquiera es cero. [1] Si cada elemento de un semigrupo es un cero izquierdo , entonces el semigrupo se llama semigrupo cero izquierdo ; un semigrupo cero derecho se define de manera análoga. [2]
Según AH Clifford y GB Preston , "A pesar de su trivialidad, estos semigrupos surgen naturalmente en una serie de investigaciones". [1]
Sea S un semigrupo con elemento cero 0. Entonces S se llama semigrupo nulo si xy = 0 para todos los x e y en S.
Sea S = {0, a , b , c } (el conjunto subyacente de) un semigrupo nulo. Entonces, la tabla de Cayley para S es la que se muestra a continuación:
Un semigrupo en el que cada elemento es un elemento cero izquierdo se denomina semigrupo cero izquierdo . Por lo tanto, un semigrupo S es un semigrupo cero izquierdo si xy = x para todos los x e y en S.
Sea S = { a , b , c } un semigrupo cero izquierdo. Entonces, la tabla de Cayley para S es la que se muestra a continuación:
Un semigrupo en el que cada elemento es un elemento cero derecho se denomina semigrupo cero derecho . Por lo tanto, un semigrupo S es un semigrupo cero derecho si xy = y para todos los x e y en S.
Sea S = { a , b , c } un semigrupo cero recto. Entonces, la tabla de Cayley para S es la que se muestra a continuación:
Un semigrupo nulo no trivial (cero izquierdo/derecho) no contiene un elemento identidad . De ello se deduce que el único monoide nulo (cero izquierdo/derecho) es el monoide trivial.
La clase de semigrupos nulos es:
De ello se deduce que la clase de semigrupos nulos (cero izquierdo/derecho) es una variedad del álgebra universal y, por tanto, una variedad de semigrupos finitos . La variedad de semigrupos nulos finitos se define por la identidad ab = cd .