stringtranslate.com

Regular skew polyhedron

In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.[1]

Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra.

History

According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra.

Coxeter offered a modified Schläfli symbol {l,m|n} for these figures, with {l,m} implying the vertex figure, m l-gons around a vertex, and n-gonal holes. Their vertex figures are skew polygons, zig-zagging between two planes.

The regular skew polyhedra, represented by {l,m|n}, follow this equation:

A first set {l,m|n}, repeats the five convex Platonic solids, and one nonconvex Kepler–Poinsot solid:

Finite regular skew polyhedra

Coxeter also enumerated the a larger set of finite regular polyhedra in his paper "regular skew polyhedra in three and four dimensions, and their topological analogues".

Just like the infinite skew polyhedra represent manifold surfaces between the cells of the convex uniform honeycombs, the finite forms all represent manifold surfaces within the cells of the uniform 4-polytopes.

Polyhedra of the form {2p, 2q | r} are related to Coxeter group symmetry of [(p,r,q,r)], which reduces to the linear [r,p,r] when q is 2. Coxeter gives these symmetry as [[(p,r,q,r)]+] which he says is isomorphic to his abstract group (2p,2q|2,r). The related honeycomb has the extended symmetry [[(p,r,q,r)]].[2]

{2p,4|r} is represented by the {2p} faces of the bitruncated {r,p,r} uniform 4-polytope, and {4,2p|r} is represented by square faces of the runcinated {r,p,r}.

{4,4|n} produces a n-n duoprism, and specifically {4,4|4} fits inside of a {4}x{4} tesseract.

A ring of 60 triangles make a regular skew polyhedron within a subset of faces of a 600-cell.
{4,5| 4} can be realized within the 32 vertices and 80 edges of a 5-cube, seen here in B5 Coxeter plane projection showing vertices and edges. The 80 square faces of the 5-cube become 40 square faces of the skew polyhedron and 40 square holes.

A final set is based on Coxeter's further extended form {q1,m|q2,q3...} or with q2 unspecified: {l, m |, q}. These can also be represented a regular finite map or {l, m}2q, and group Gl,m,q.[3]

Higher dimensions

Regular skew polyhedra can also be constructed in dimensions higher than 4 as embeddings into regular polytopes or honeycombs. For example, the regular icosahedron can be embedded into the vertices of the 6-demicube; this was named the regular skew icosahedron by H. S. M. Coxeter. The dodecahedron can be similarly embedded into the 10-demicube.[4]

See also

Notes

  1. ^ Abstract regular polytopes, p.7, p.17
  2. ^ Coxeter, Regular and Semi-Regular Polytopes II 2.34)
  3. ^ Coxeter and Moser, Generators and relations for discrete groups, Sec 8.6 Maps having specified Petrie polygons. p. 110
  4. ^ Deza, Michael; Shtogrin, Mikhael (1998). "Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices". Advanced Studies in Pure Mathematics. Arrangements – Tokyo 1998: 77. doi:10.2969/aspm/02710073. ISBN 978-4-931469-77-8. Retrieved 4 April 2020.

References