stringtranslate.com

Emisión de radio solar

La emisión de radio solar se refiere a las ondas de radio que el Sol produce naturalmente , principalmente desde las capas inferior y superior de la atmósfera llamadas cromosfera y corona , respectivamente. El Sol produce emisiones de radio a través de cuatro mecanismos conocidos, cada uno de los cuales opera principalmente convirtiendo la energía de los electrones en movimiento en radiación electromagnética . Los cuatro mecanismos de emisión son la emisión térmica bremsstrahlung (frenado), la emisión giromagnética, la emisión de plasma y la emisión de máser de ciclotrón electrónico . Los dos primeros son mecanismos incoherentes , lo que significa que son la suma de radiación generada de forma independiente por muchas partículas individuales. Estos mecanismos son los principales responsables de las persistentes emisiones "de fondo" que varían lentamente a medida que evolucionan las estructuras de la atmósfera. Los dos últimos procesos son mecanismos coherentes , que se refieren a casos especiales en los que la radiación se produce de manera eficiente en un conjunto particular de frecuencias. Los mecanismos coherentes pueden producir temperaturas (intensidades) de brillo mucho mayores y son los principales responsables de los intensos picos de radiación llamados estallidos de radio solares, que son subproductos de los mismos procesos que conducen a otras formas de actividad solar como erupciones solares y eyecciones de masa coronal .

Historia y observaciones

Un collage de antenas de varios telescopios de radiointerferometría de baja frecuencia utilizados para observar el Sol. De izquierda a derecha, de arriba a abajo: Radioheliógrafo Culgoora, Radioheliógrafo Clark Lake, Radioheliógrafo Guaribidanur , Radioheliógrafo Nancay , Murchison Widefield Array y Low Frequency Array .

La emisión de radio del Sol fue reportada por primera vez en la literatura científica por Grote Reber en 1944. [1] Esas fueron observaciones de emisiones de microondas de frecuencia de 160 MHz (longitud de onda de 2 metros) que emanaban de la cromosfera . Sin embargo, la primera observación conocida fue en 1942, durante la Segunda Guerra Mundial, realizada por operadores de radar británicos que detectaron una intensa explosión de radio solar de baja frecuencia; esa información se mantuvo en secreto por ser potencialmente útil para evadir el radar enemigo, pero luego fue descrita en una revista científica después de la guerra. [2] Uno de los descubrimientos más importantes de los primeros radioastrónomos solares como Joseph Pawsey fue que el Sol produce muchas más emisiones de radio de lo esperado de la radiación estándar de un cuerpo negro . [3] La explicación para esto fue propuesta por Vitaly Ginzburg en 1946, quien sugirió que la responsable era la emisión de bremsstrahlung térmica de una corona de un millón de grados . [4] La existencia de temperaturas tan extraordinariamente altas en la corona había sido indicada anteriormente mediante observaciones de espectroscopía óptica , pero la idea siguió siendo controvertida hasta que fue confirmada más tarde por los datos de radio. [5]

Antes de 1950, las observaciones se realizaban principalmente utilizando antenas que registraban la intensidad de todo el Sol en una única frecuencia de radio. [6] Observadores como Ruby Payne-Scott y Paul Wild utilizaron observaciones simultáneas en numerosas frecuencias para encontrar que los tiempos de aparición de las ráfagas de radio variaban dependiendo de la frecuencia, lo que sugiere que las ráfagas de radio estaban relacionadas con perturbaciones que se propagan hacia afuera, lejos del Sol, a través de diferentes capas de plasma con diferentes densidades. [7] Estos hallazgos motivaron el desarrollo de radioespectrógrafos que eran capaces de observar continuamente el Sol en un rango de frecuencias. Este tipo de observación se denomina espectro dinámico , y gran parte de la terminología utilizada para describir la emisión de radio solar se relaciona con características observadas en los espectros dinámicos, como la clasificación de las ráfagas de radio solares. [8] A continuación se muestran ejemplos de espectros dinámicos en la sección de ráfagas de radio. Los radioespectrógrafos solares contemporáneos notables incluyen la Red de Radiotelescopios Solares , la red e-CALLISTO y el instrumento WAVES a bordo de la nave espacial Wind .

Sin embargo, los radioespectrógrafos no producen imágenes y, por lo tanto, no se pueden utilizar para localizar características espaciales. Esto puede hacer que sea muy difícil entender de dónde proviene un componente específico de la emisión de radio solar y cómo se relaciona con las características vistas en otras longitudes de onda. Producir una imagen de radio del Sol requiere un interferómetro, lo que en radioastronomía significa una serie de muchos telescopios que operan juntos como un solo telescopio para producir una imagen. Esta técnica es un subtipo de interferometría llamada síntesis de apertura . A partir de la década de 1950, se desarrollaron varios interferómetros simples que podían proporcionar un seguimiento limitado de las ráfagas de radio. [6] Esto también incluyó la invención de la interferometría marina , que se utilizó para asociar la actividad de radio con las manchas solares . [9]

Las imágenes de rutina del Sol comenzaron en 1967 con la puesta en servicio del Radioheliógrafo Culgoora, que funcionó hasta 1986. [10] Un radioheliógrafo es simplemente un interferómetro dedicado a observar el Sol. Además de Culgoora, ejemplos notables incluyen el radioheliógrafo de Clark Lake, [11] el radioheliógrafo de Nançay , el radioheliógrafo de Nobeyama , el radioheliógrafo de Gauribidanur , el radioheliógrafo de Siberia y el radioheliógrafo espectral chino. [12] Además, los interferómetros que se utilizan para otras observaciones astrofísicas también se pueden utilizar para observar el Sol. Los radiotelescopios de uso general que también realizan observaciones solares incluyen el Very Large Array , el Atacama Large Millimeter Array , el Murchison Widefield Array y el Low-Frequency Array . El collage de arriba muestra antenas de varios radiotelescopios de baja frecuencia utilizados para observar el Sol.

Mecanismos

Todos los procesos que se describen a continuación producen radiofrecuencias que dependen de las propiedades del plasma donde se origina la radiación, en particular la densidad de electrones y la intensidad del campo magnético . En este contexto son especialmente importantes dos parámetros de la física del plasma :

La frecuencia del plasma de electrones ,

y la girofrecuencia del electrón ,

donde es la densidad de electrones en cm −3 , es la intensidad del campo magnético en Gauss (G), es la carga del electrón , es la masa del electrón y es la velocidad de la luz . Los tamaños relativos de estas dos frecuencias determinan en gran medida qué mecanismo de emisión dominará en un entorno particular. Por ejemplo, la emisión giromagnética de alta frecuencia domina en la cromosfera, donde las intensidades del campo magnético son comparativamente grandes, mientras que la bremsstrahlung térmica de baja frecuencia y la emisión de plasma dominan en la corona, donde las intensidades y densidades del campo magnético son generalmente más bajas que en la cromosfera. . [13] En las imágenes a continuación, las primeras cuatro en la parte superior izquierda están dominadas por la emisión giromagnética de la cromosfera, la región de transición y la corona baja, mientras que las tres imágenes de la derecha están dominadas por la emisión de bremsstrahlung térmica de la corona, [ 14] con frecuencias más bajas generadas a mayores alturas sobre la superficie.

Imágenes silenciosas de radio solar en múltiples frecuencias
El Sol visto en ondas de radio desde 25,8 GHz hasta 24,6 MHz. De arriba a la izquierda a abajo a la derecha, las observaciones fueron registradas por el radioheliógrafo Nobeyama (NoRH), el Very Large Array (VLA), el radioheliógrafo Nançay (NRH), el Murchison Widefield Array (MWA) y el Low-Frequency Array (LOFAR). Los círculos sólidos en las imágenes de la derecha corresponden al tamaño del Sol visto en luz visible.

Emisión de bremsstrahlung térmica

La emisión Bremsstrahlung , del alemán "radiación de frenado", se refiere a ondas electromagnéticas producidas cuando una partícula cargada acelera y parte de su energía cinética se convierte en radiación. [15] La bremsstrahlung térmica se refiere a la radiación de un plasma en equilibrio térmico y es impulsada principalmente por colisiones de Coulomb donde un electrón es desviado por el campo eléctrico de un ion . Esto a menudo se conoce como emisión libre para un plasma completamente ionizado como la corona solar porque implica colisiones de partículas "libres", a diferencia de electrones en transición entre estados unidos en un átomo. Esta es la principal fuente de emisión de fondo inactiva de la corona, donde inactivo significa fuera de los períodos de ráfagas de radio. [dieciséis]

La radiofrecuencia de la emisión de bremsstrahlung está relacionada con la densidad de electrones de un plasma a través de la frecuencia del plasma de electrones ( ) de la Ecuación 1 . [17] Un plasma con una densidad puede producir emisiones solo en o por debajo del correspondiente . [18] La densidad en la corona generalmente disminuye con la altura sobre la "superficie" visible, o fotosfera , lo que significa que las emisiones de menor frecuencia se producen más arriba en la atmósfera, y el Sol parece más grande a frecuencias más bajas. Este tipo de emisión es más prominente por debajo de 300 MHz debido a las densidades coronales típicas, pero las estructuras particularmente densas en la corona y la cromosfera pueden generar emisiones bremsstrahlung con frecuencias en el rango de GHz. [19]

Emisión giromagnética

La emisión giromagnética también se produce a partir de la energía cinética de una partícula cargada, generalmente un electrón. Sin embargo, en este caso, un campo magnético externo hace que la trayectoria de la partícula exhiba un movimiento giratorio en espiral, lo que resulta en una aceleración centrípeta que a su vez produce las ondas electromagnéticas . [16] Se utiliza una terminología diferente para el mismo fenómeno básico dependiendo de qué tan rápido la partícula gira en espiral alrededor del campo magnético, lo cual se debe a las diferentes matemáticas requeridas para describir la física. La emisión de girorresonancia se refiere a velocidades más lentas y no relativistas y también se denomina magneto-bremsstrahlung o emisión de ciclotrón . El girosincrotrón corresponde al caso levemente relativista, donde las partículas giran a una fracción pequeña pero significativa de la velocidad de la luz, y la emisión sincrotrón se refiere al caso relativista donde las velocidades se acercan a la de la luz.

La girorresonancia y el girosincrotrón son los más importantes en el contexto solar, aunque puede haber casos especiales en los que también opere la emisión de sincrotrón. [20] Para cualquier subtipo, la emisión giromagnética ocurre cerca de la girofrecuencia del electrón ( ) de la Ecuación 2 o uno de sus armónicos . Este mecanismo domina cuando la intensidad del campo magnético es tan grande que > . Esto es principalmente cierto en la cromosfera, donde la emisión de girorresonancia es la principal fuente de emisión de radio inactiva (sin ráfagas), que produce radiación de microondas en el rango de GHz. [13] La emisión de girorresonancia también se puede observar desde las estructuras más densas de la corona, donde se puede utilizar para medir la intensidad del campo magnético coronal. [21] La emisión de girosincrotrón es responsable de ciertos tipos de ráfagas de radio de microondas de la cromosfera y probablemente también sea responsable de ciertos tipos de ráfagas de radio coronales. [22]

Emisión de plasma

Diagrama de flujo que describe las etapas de la emisión de plasma, responsable de la mayoría de los tipos de explosiones de radio solares. En el contexto solar, el haz de electrones se acelera ya sea por reconexión magnética o por una onda de choque . Adaptado del gráfico de Donald Melrose [23]

La emisión de plasma se refiere a un conjunto de procesos relacionados que convierten parcialmente la energía de las ondas de Langmuir en radiación. [23] Es la forma más común de emisión de radio coherente del Sol y se acepta comúnmente como el mecanismo de emisión para la mayoría de los tipos de ráfagas de radio solares, que pueden exceder el nivel de radiación de fondo en varios órdenes de magnitud durante períodos breves. [16] Las ondas de Langmuir , también llamadas ondas de plasma de electrones o simplemente oscilaciones de plasma , son oscilaciones de densidad electrónica que ocurren cuando un plasma se perturba de modo que una población de electrones se desplaza en relación con los iones. [24] Una vez desplazada, la fuerza de Coloumb atrae a los electrones hacia los iones y, en última instancia, los pasa, lo que los hace oscilar hacia adelante y hacia atrás.

Las ondas de Langmuir se producen en la corona solar por una inestabilidad del plasma que se produce cuando un haz de electrones no térmicos (de movimiento rápido) se mueve a través del plasma ambiental. [25] El haz de electrones puede acelerarse mediante reconexión magnética , el proceso que sustenta las erupciones solares , o mediante una onda de choque , y estos dos procesos básicos operan en diferentes contextos para producir diferentes tipos de ráfagas de radio solares. [26] La inestabilidad que genera las ondas de Langmuir es la inestabilidad de dos corrientes , que también se llama inestabilidad del haz o de golpe en la cola en casos como este en los que se inyecta un haz de electrones en un plasma, creando un "golpe" en la cola de alta energía de la distribución de velocidad de las partículas del plasma. [23] Este golpe facilita el crecimiento exponencial de las ondas de Langmuir en el plasma ambiental a través de la transferencia de energía del haz de electrones a modos específicos de ondas de Langmuir. Una pequeña fracción de la energía de las ondas de Langmuir se puede convertir en radiación electromagnética mediante interacciones con otros modos de ondas, concretamente las ondas sonoras iónicas . [23] A la derecha se muestra un diagrama de flujo de las etapas de emisión de plasma.

Dependiendo de estas interacciones de ondas, se puede producir una emisión de radio coherente en la frecuencia fundamental del plasma de electrones ( ; Ecuación 1 ) o su armónico (2 ). [27] [28] La emisión en a menudo se denomina emisión de plasma fundamental , mientras que la emisión en 2 se denomina emisión de plasma armónico . Esta distinción es importante porque los dos tipos tienen diferentes propiedades observadas e implican diferentes condiciones del plasma. Por ejemplo, la emisión de plasma fundamental exhibe una fracción de polarización circular mucho mayor [29] y se origina a partir de plasma que es cuatro veces más denso que la emisión de plasma armónico. [30]

Emisión de máser electrón-ciclotrón

El último mecanismo de emisión de radio solar, y el menos común, es la emisión de máser de electrón-ciclotrón (ECME). Maser es un acrónimo de "amplificación de microondas por emisión estimulada de radiación", que originalmente se refería a un dispositivo de laboratorio que puede producir radiación intensa de una frecuencia específica a través de emisión estimulada . La emisión estimulada es un proceso mediante el cual un grupo de átomos se mueve a niveles de energía más altos (por encima del equilibrio térmico ) y luego se estimula para liberar esa energía adicional de una vez. Estas inversiones de población pueden ocurrir naturalmente para producir máseres astrofísicos , que son fuentes de radiación muy intensa de líneas espectrales específicas . [31]

Sin embargo, la emisión de máser de electrón-ciclotrón no implica inversiones poblacionales de niveles de energía atómica. [32] El término máser adoptado aquí como analogía es un nombre algo inapropiado . En ECME, la inyección de electrones semirelativistas no térmicos en un plasma produce una inversión de población análoga a la de un máser en el sentido de que se agregó una población de alta energía a una distribución de equilibrio. Esto es muy similar al comienzo del proceso de emisión de plasma descrito en la sección anterior, pero cuando la densidad del plasma es baja y/o la intensidad del campo magnético es alta de modo que ( Ecuaciones 1 y 2 ), la energía de los electrones no térmicos no puede convertirse eficientemente en ondas de Langmuir. [32] Esto conduce en cambio a una emisión directa a través de una inestabilidad del plasma que se expresa analíticamente como un coeficiente de absorción negativo (es decir, una tasa de crecimiento positiva) para una distribución particular de partículas, la más famosa la distribución de conos de pérdida. [33] [23] [34] ECME es el mecanismo aceptado para las explosiones de picos de microondas de la cromosfera [16] y a veces se invoca para explicar características de las explosiones de radio coronales que no pueden explicarse mediante la emisión de plasma o la emisión de girosincrotrón. [35] [36]

Teoría magnetoiónica y polarización.

La teoría magnetoiónica describe la propagación de ondas electromagnéticas en entornos donde un plasma ionizado está sometido a un campo magnético externo, como la corona solar y la ionosfera de la Tierra . [37] [18] La corona generalmente se trata con el "enfoque del plasma frío", que supone que las velocidades características de las ondas son mucho más rápidas que las velocidades térmicas de las partículas de plasma. [17] [38] Esta suposición permite despreciar los efectos térmicos, y la mayoría de los enfoques también ignoran los movimientos de los iones y suponen que las partículas no interactúan a través de colisiones.

Según estas aproximaciones, la ecuación de dispersión de las ondas electromagnéticas incluye dos modos de espacio libre que pueden escapar del plasma en forma de radiación (ondas de radio). Estos se denominan modos ordinario ( ) y extraordinario ( ). [18] El modo ordinario es "ordinario" en el sentido de que la respuesta del plasma es la misma que si no hubiera campo magnético, mientras que el modo - tiene un índice de refracción algo diferente. Es importante destacar que cada modo está polarizado en sentidos opuestos que dependen del ángulo con respecto al campo magnético. Generalmente se aplica una aproximación cuasicircular, en cuyo caso ambos modos están 100% polarizados circularmente con sentidos opuestos. [18]

Los modos - y - se producen a diferentes velocidades dependiendo del mecanismo de emisión y los parámetros del plasma, lo que conduce a una señal de polarización circular neta. Por ejemplo, la bremsstrahlung térmica favorece ligeramente el modo -, mientras que la emisión de plasma favorece mucho el modo -. [29] Esto hace que la polarización circular sea una propiedad extremadamente importante para los estudios de la emisión de radio solar, ya que puede usarse para ayudar a comprender cómo se produjo la radiación. Si bien la polarización circular es más frecuente en las observaciones de radio solares, también es posible producir polarizaciones lineales en determinadas circunstancias. [39] Sin embargo, la presencia de campos magnéticos intensos conduce a la rotación de Faraday que distorsiona las señales polarizadas linealmente, haciéndolas extremadamente difíciles o imposibles de detectar. [40] Sin embargo, es posible detectar fuentes astrofísicas de fondo linealmente polarizadas que están ocultas por la corona, [41] en cuyo caso el impacto de la rotación de Faraday se puede utilizar para medir la intensidad del campo magnético coronal. [42]

Efectos de propagación

La aparición de emisiones de radio solares, particularmente en bajas frecuencias, está fuertemente influenciada por los efectos de propagación. [43] Un efecto de propagación es cualquier cosa que impacte la trayectoria o el estado de una onda electromagnética después de su producción. Por lo tanto, estos efectos dependen del medio por el que pasó la onda antes de ser observada. Los impactos más dramáticos en las emisiones de radio solares ocurren en la corona y en la ionosfera de la Tierra . Hay tres efectos principales: refracción, dispersión y acoplamiento de modos.

La refracción es la desviación del camino de la luz cuando ingresa a un nuevo medio o pasa a través de un material con densidad variable. La densidad de la corona generalmente disminuye con la distancia al Sol, lo que hace que las ondas de radio se refracten hacia la dirección radial. [44] [45] Cuando la emisión de radio solar ingresa a la ionosfera de la Tierra, la refracción también puede distorsionar severamente la ubicación aparente de la fuente dependiendo del ángulo de visión y las condiciones ionosféricas. [46] Los modos - y - discutidos en la sección anterior también tienen índices de refracción ligeramente diferentes , lo que puede llevar a la separación de los dos modos. [29]

La contraparte de la refracción es la reflexión . Una onda de radio puede reflejarse en la atmósfera solar cuando encuentra una región de densidad particularmente alta en comparación con el lugar donde se produjo, y tales reflexiones pueden ocurrir muchas veces antes de que una onda de radio escape de la atmósfera. Este proceso de muchas reflexiones sucesivas se llama dispersión y tiene muchas consecuencias importantes. [47] La ​​dispersión aumenta el tamaño aparente de todo el Sol y de las fuentes compactas dentro de él, lo que se denomina ensanchamiento angular . [48] ​​[49] La dispersión aumenta el ángulo del cono sobre el cual se puede observar la emisión dirigida, lo que puede incluso permitir la observación de ráfagas de radio de baja frecuencia que ocurrieron en el lado oculto del Sol. [50] Debido a que las fibras de alta densidad que son las principales responsables de la dispersión no están alineadas aleatoriamente y generalmente son radiales, la dispersión aleatoria contra ellas también puede cambiar sistemáticamente la ubicación observada de una ráfaga de radio a una altura mayor que donde realmente se produjo. [51] [30] Finalmente, la dispersión tiende a despolarizar la emisión y es probable que sea la razón por la que las ráfagas de radio a menudo exhiben fracciones de polarización circular mucho más bajas de lo que predicen las teorías estándar. [52]

El acoplamiento de modos se refiere a los cambios de estado de polarización de los modos - y - en respuesta a diferentes condiciones del plasma. [53] Si una onda de radio pasa a través de una región donde la orientación del campo magnético es casi perpendicular a la dirección de viaje, lo que se llama región cuasi transversal, [54] el signo de polarización (es decir, izquierda o derecha; positivo o negativo) puede cambiar dependiendo de la radiofrecuencia y los parámetros del plasma. [55] Este concepto es crucial para interpretar las observaciones de polarización de la radiación solar de microondas [56] [57] y también puede ser importante para ciertas ráfagas de radio de baja frecuencia. [58]

Explosiones de radio solares

Las ráfagas de radio solares son breves períodos durante los cuales la emisión de radio del Sol se eleva por encima del nivel de fondo. [16] Son firmas de los mismos procesos que conducen a las formas más conocidas de actividad solar, como las manchas solares , las erupciones solares y las eyecciones de masa coronal . [17] Las ráfagas de radio pueden superar el nivel de radiación de fondo sólo ligeramente o en varios órdenes de magnitud (por ejemplo, de 10 a 10.000 veces), dependiendo de una variedad de factores que incluyen la cantidad de energía liberada, los parámetros del plasma de la región de la fuente, la geometría de visualización y los medios a través de los cuales se propagó la radiación antes de ser observada. La mayoría de los tipos de ráfagas de radio solares son producidos por el mecanismo de emisión de plasma que opera en diferentes contextos, aunque algunos son causados ​​por la emisión de máser (giro)sincrotrón y/o electrón-ciclotrón.

Explosiones de radio solares de tipos I, II y III como se ven en observaciones del espectro dinámico del radioespectrógrafo Learmonth Solar. El color corresponde a la intensidad. Las características perfectamente horizontales que se ven en frecuencias específicas corresponden a interferencias de radiofrecuencia de fuentes generadas por humanos.

Las ráfagas de radio solares se clasifican en gran medida según cómo aparecen en las observaciones del espectro dinámico realizadas por radioespectrógrafos. Los primeros tres tipos, que se muestran en la imagen de la derecha, fueron definidos por Paul Wild y Lindsay McCready en 1950 utilizando las primeras observaciones radioespectrográficas de estallidos métricos (de baja frecuencia). [8] Este esquema de clasificación se basa principalmente en cómo la frecuencia de una ráfaga varía con el tiempo. Los tipos IV y V se agregaron unos pocos años después de los tres iniciales, y desde entonces se han identificado otros tipos y subtipos.

Tipo i

Las ráfagas de tipo I son picos de radiación que duran alrededor de un segundo y ocurren en un rango de frecuencia relativamente estrecho ( ) con poca o ninguna variación perceptible en la frecuencia. [59] Tienden a ocurrir en grupos llamados tormentas de ruido que a menudo se superponen a una emisión continua mejorada (de amplio espectro) con el mismo rango de frecuencia. [60] Si bien cada ráfaga individual de Tipo I no varía en frecuencia, una cadena de ráfagas de Tipo I en una tormenta de ruido puede variar lentamente de frecuencias más altas a más bajas en unos pocos minutos. Las tormentas de ruido pueden durar desde horas hasta semanas y generalmente se observan en frecuencias relativamente bajas, entre 50 y 500 MHz.

Las tormentas de ruido están asociadas con regiones activas . [61] Las regiones activas son regiones de la atmósfera solar con altas concentraciones de campos magnéticos, e incluyen una mancha solar en su base en la fotosfera, excepto en los casos en que los campos magnéticos son bastante débiles. [62] La asociación con regiones activas se conoce desde hace décadas, pero las condiciones necesarias para producir tormentas de ruido aún son un misterio. No todas las regiones activas que producen otras formas de actividad, como llamaradas, generan tormentas de ruido y, a diferencia de otros tipos de ráfagas de radio solares, a menudo es difícil identificar firmas no radioeléctricas de las ráfagas de Tipo I. [63] [64]

En general, se acepta que el mecanismo de emisión de las ráfagas de tipo I es la emisión de plasma fundamental debido a las altas fracciones de polarización circular que se observan con frecuencia. Sin embargo, aún no hay consenso sobre qué proceso acelera los electrones necesarios para estimular la emisión de plasma. Las ideas principales son eventos menores de reconexión magnética u ondas de choque impulsadas por ondas que se propagan hacia arriba. [65] [66] Desde el año 2000, en general se han favorecido diferentes escenarios de reconexión magnética. Un escenario implica la reconexión entre los campos magnéticos abiertos y cerrados en los límites de las regiones activas, [67] y otro implica el movimiento de características magnéticas en la fotosfera. [68]

Tipo II

Las ráfagas de tipo II exhiben una deriva relativamente lenta de frecuencias altas a bajas, de alrededor de 0,05 MHz por segundo, [69] normalmente en el transcurso de unos pocos minutos. [70] A menudo exhiben dos bandas distintas de emisión que corresponden a la emisión de plasma fundamental y armónica que emana de la misma región. [71] Las explosiones de tipo II están asociadas con eyecciones de masa coronal (CME) y se producen en el borde de ataque de una CME, donde una onda de choque acelera los electrones responsables de estimular la emisión de plasma. [72] La frecuencia varía de valores más altos a más bajos porque depende de la densidad de electrones, y el choque se propaga hacia afuera, alejándose del Sol, a través de densidades cada vez más bajas. Utilizando un modelo para la densidad atmosférica del Sol, la tasa de deriva de frecuencia se puede utilizar para estimar la velocidad de la onda de choque. Este ejercicio normalmente da como resultado velocidades de alrededor de 1000 km/s, lo que coincide con las descargas CME determinadas a partir de otros métodos. [73]

Si bien la emisión de plasma es el mecanismo aceptado, las explosiones de Tipo II no exhiben cantidades significativas de polarización circular como se esperaría según la teoría estándar de emisión de plasma. [74] Se desconoce el motivo de esto, pero una hipótesis principal es que el nivel de polarización es suprimido por los efectos de dispersión relacionados con tener un campo magnético no homogéneo cerca de un choque magnetohidrodinámico . [75] Las ráfagas de tipo II a veces exhiben estructuras finas llamadas ráfagas en espiga que emanan de la ráfaga principal, tal como aparece en un espectro dinámico, y se extienden a frecuencias más bajas. Se cree que las estructuras en espiga son el resultado de electrones acelerados por choques que pudieron escapar mucho más allá de la región de choque para excitar ondas de Langmuir en plasma de menor densidad que la región de explosión primaria. [76] [77]

Tipo III

Al igual que las ráfagas de tipo II, las de tipo III también pasan de frecuencias altas a bajas y se atribuyen ampliamente al mecanismo de emisión de plasma. [78] Sin embargo, las ráfagas de Tipo III se desplazan mucho más rápidamente, alrededor de 100 MHz por segundo, y por lo tanto deben estar relacionadas con perturbaciones que se mueven más rápidamente que las ondas de choque responsables de las de Tipo II. [79] Las ráfagas de tipo III están asociadas con haces de electrones que se aceleran a pequeñas fracciones de la velocidad de la luz ( 0,1 a 0,3 c) mediante reconexión magnética, el proceso responsable de las erupciones solares. En la imagen siguiente, la cadena de contornos de color muestra las ubicaciones de tres ráfagas de Tipo III en diferentes frecuencias. La progresión del violeta al rojo corresponde a las trayectorias de los haces de electrones que se alejan del Sol y excitan emisiones de plasma de frecuencia cada vez más baja a medida que encuentran densidades cada vez más bajas. Dado que en última instancia son causadas por reconexión magnética, las de tipo III están fuertemente asociadas con llamaradas de rayos X y, de hecho, se observan durante casi todas las llamaradas grandes. [80] Sin embargo, las llamaradas de rayos X de pequeñas a moderadas no siempre exhiben explosiones de Tipo III y viceversa debido a las condiciones algo diferentes que se requieren para que se produzca y observe la emisión de alta y baja energía. [81] [82]

Imágenes de Murchison Widefield Array de radiación de fondo a 240 MHz (escala de grises) con contornos de color que muestran ráfagas de tipo III en un rango de frecuencias. Las ráfagas son cientos de veces más brillantes que el fondo, y los contornos de menor frecuencia aparecen a mayores alturas porque las ráfagas son producidas por un haz de electrones que se aleja del Sol, excitando emisiones de radio de frecuencia decreciente a medida que aumenta la distancia.

Las ráfagas de tipo III pueden ocurrir solas, en pequeños grupos o en cadenas denominadas tormentas de tipo III que pueden durar muchos minutos. A menudo se subdividen en dos tipos: explosiones coronales e interplanetarias de tipo III. [78] Coronal se refiere al caso en el que un haz de electrones viaja en la corona dentro de unos pocos radios solares de la fotosfera. Por lo general, comienzan en frecuencias de cientos de MHz y descienden hasta decenas de MHz en unos pocos segundos. Los haces de electrones que excitan la radiación viajan a lo largo de líneas de campo magnético específicas que pueden estar cerradas o abiertas al espacio interplanetario. [83] Los haces de electrones que escapan al espacio interplanetario pueden excitar ondas de Langmuir en el plasma del viento solar para producir ráfagas interplanetarias de Tipo III que pueden extenderse hasta 20 kHz y menos para haces que alcanzan 1 unidad astronómica y más. [78] Las frecuencias muy bajas de las explosiones interplanetarias están por debajo del límite ionosférico ( 10 MHz), lo que significa que están bloqueadas por la ionosfera de la Tierra y son observables sólo desde el espacio.

Las observaciones directas in situ de los electrones y las ondas de Langmuir (oscilaciones del plasma) asociadas con las explosiones interplanetarias de tipo III se encuentran entre las pruebas más importantes para la teoría de la emisión de plasma de las explosiones de radio solares. [84] [85] Las ráfagas de tipo III exhiben niveles moderados de polarización circular, generalmente menos del 50%. [86] Esto es menor de lo esperado por la emisión de plasma y probablemente se deba a la despolarización por dispersión por faltas de homogeneidad de densidad y otros efectos de propagación. [52]

Tipo IV

Las ráfagas de tipo IV son picos de emisión continua de banda ancha que incluyen algunos subtipos distintos asociados con diferentes fenómenos y diferentes mecanismos de emisión. El primer tipo que se definió fue el estallido móvil de Tipo IV, que requiere observaciones de imágenes (es decir, interferometría) para detectarlo. [87] Se caracterizan por una fuente continua que se mueve hacia afuera y que a menudo está precedida por una explosión de tipo II en asociación con una eyección de masa coronal (CME). [75] El mecanismo de emisión de las explosiones de Tipo IV se atribuye generalmente a la emisión de girosincrotrón, emisión de plasma o alguna combinación de ambas que resulta de electrones que se mueven rápidamente atrapados dentro de los campos magnéticos de una CME en erupción. [16] [88]

Las ráfagas estacionarias de tipo IV son más comunes y no están asociadas con CME. [75] Son emisiones continuas de banda ancha asociadas con erupciones solares o explosiones de Tipo I. [16] Las explosiones de tipo IV asociadas a las llamaradas también se denominan ráfagas continuas de llamaradas y, por lo general, comienzan en la fase impulsiva de una llamarada o poco después. Las llamaradas más grandes a menudo incluyen una fase continua de tormenta que sigue al proceso continuo de llamaradas. [89] La continuidad de la tormenta puede durar desde horas hasta días y puede transformarse en una tormenta de ruido ordinaria de Tipo I en eventos de larga duración. [6] Tanto las llamaradas como las tormentas continuas de Tipo IV se atribuyen a la emisión de plasma, pero la tormenta continua exhibe grados mucho mayores de polarización circular por razones que no se conocen completamente. [dieciséis]

Tipo V

Las ráfagas de tipo V son las menos comunes de los cinco tipos estándar. [75] Son emisiones continuas que duran de uno a unos pocos minutos inmediatamente después de un grupo de ráfagas de Tipo III, que generalmente ocurren por debajo de alrededor de 120 MHz. [16] Generalmente se cree que los tipos V son causados ​​por una emisión de plasma armónico asociada con las mismas corrientes de electrones responsables de las explosiones de tipo III asociadas. [90] A veces exhiben importantes desplazamientos posicionales de las explosiones de Tipo III, lo que puede deberse a que los electrones viajan a lo largo de estructuras de campo magnético algo diferentes. [91] Las ráfagas de tipo V persisten durante mucho más tiempo que las de tipo III porque son impulsadas por una población de electrones más lenta y menos colimada , lo que produce una emisión de banda más amplia y también conduce a una inversión en el signo de polarización circular respecto al del tipo asociado. III estalla debido a la diferente distribución de ondas de Langmuir. [92] Si bien la emisión de plasma es el mecanismo comúnmente aceptado, también se ha propuesto la emisión de máser de electrón-ciclotrón. [93]

Otros tipos

Además de los cinco tipos clásicos, existen varios tipos adicionales de ráfagas de radio solares. Estos incluyen variaciones de los tipos estándar, estructura fina dentro de otro tipo y fenómenos completamente distintos. Los ejemplos variantes incluyen ráfagas de tipo J y U, que son ráfagas de tipo III en las que la deriva de frecuencia se invierte para pasar de frecuencias más bajas a más altas, lo que sugiere que un haz de electrones se alejó primero y luego regresó hacia el Sol a lo largo de una trayectoria de campo magnético cerrado. [78] Las explosiones de estructura fina incluyen patrones de cebra [94] y explosiones de fibras [95] que pueden observarse dentro de las explosiones de tipo IV, junto con las explosiones en espiga [76] que a veces acompañan a las de tipo II. Las ráfagas de tipo S, que duran sólo milisegundos, son un ejemplo de una clase distinta. [96] También hay una variedad de tipos de ráfagas de microondas de alta frecuencia, como ráfagas de microondas de tipo IV, ráfagas impulsivas, post-ráfagas y ráfagas de picos. [97]

Emisión de radio de otras estrellas.

Debido a su proximidad a la Tierra, el Sol es la fuente más brillante de emisión de radio astronómica. Pero, por supuesto, otras estrellas también producen emisiones de radio y pueden producir radiación mucho más intensa en términos absolutos que la observada desde el Sol. Para las estrellas "normales" de secuencia principal , los mecanismos que producen la emisión de radio estelar son los mismos que los que producen la emisión de radio solar. [16] Sin embargo, las emisiones de las " estrellas de radio " pueden exhibir propiedades significativamente diferentes en comparación con el Sol, y la importancia relativa de los diferentes mecanismos puede cambiar dependiendo de las propiedades de la estrella, particularmente con respecto al tamaño y la velocidad de rotación , este último de los cuales determina en gran medida la fuerza del campo magnético de una estrella . Ejemplos notables de emisión de radio estelar incluyen la emisión estable y en reposo de las cromosferas y coronas estelares, las ráfagas de radio de estrellas en llamaradas , la emisión de radio de vientos estelares masivos y la emisión de radio asociada con estrellas binarias cercanas . [16] Las estrellas anteriores a la secuencia principal, como las estrellas T Tauri, también exhiben emisión de radio a través de procesos razonablemente bien comprendidos, a saber, la emisión de girosincrotrón y máser de ciclotrón de electrones. [98]

También existen diferentes procesos de emisión de radio para ciertas estrellas anteriores a la secuencia principal , junto con estrellas posteriores a la secuencia principal, como las estrellas de neutrones . [16] Estos objetos tienen velocidades de rotación muy altas, lo que conduce a campos magnéticos muy intensos que son capaces de acelerar grandes cantidades de partículas a velocidades altamente relativistas . De particular interés es el hecho de que aún no hay consenso sobre el mecanismo coherente de emisión de radio responsable de los púlsares , que no puede explicarse mediante los dos mecanismos coherentes bien establecidos que se analizan aquí: la emisión de plasma y la emisión de máser de ciclotrón de electrones. [99] Los mecanismos propuestos para la emisión de radio púlsar incluyen la emisión de curvatura coherente, la emisión de plasma relativista, la emisión Doppler anómala y la emisión de aceleración lineal o emisión de máser de electrones libres. [99] Todos estos procesos todavía implican la transferencia de energía de los electrones en movimiento a la radiación. Sin embargo, en este caso los electrones se mueven casi a la velocidad de la luz, y el debate gira en torno a qué proceso acelera estos electrones y cómo se convierte su energía en radiación. [100]

Referencias

  1. ^ Reber, Grote (noviembre de 1944). "Estática cósmica". La revista astrofísica . 100 : 279. Código bibliográfico : 1944ApJ...100..279R. doi : 10.1086/144668 . ISSN  0004-637X. S2CID  51638960.
  2. ^ Hola, JS (enero de 1946). "Radiaciones solares en la banda de longitud de onda de radio de 4 a 6 metros". Naturaleza . 157 (3976): 47–48. Código Bib :1946Natur.157...47H. doi :10.1038/157047b0. ISSN  0028-0836. S2CID  4119848.
  3. ^ Pawsey, JL (noviembre de 1946). "Observación de la radiación térmica del Sol de millones de grados en una longitud de onda de 1,5 metros". Naturaleza . 158 (4018): 633–634. Código Bib :1946Natur.158..633P. doi :10.1038/158633a0. ISSN  0028-0836. S2CID  4095314.
  4. ^ Ginzburg, Vitaly (1946). "Sobre la radiación solar en el espectro radioeléctrico". Actas (Doklady) de la Academia de Ciencias de la URSS . 52 : 487.
  5. ^ Golub, L. (León) (2010). La corona solar. Pasachoff, Jay M. (2ª ed.). Cambridge, Reino Unido: Cambridge University Press. ISBN 978-0-521-88201-9. OCLC  318870775.
  6. ^ abc Selección, Monique; Vilmer, Nicole (1 de octubre de 2008). "Sesenta y cinco años de radioastronomía solar: llamaradas, eyecciones de masa coronal y conexión Sol-Tierra". La Revista de Astronomía y Astrofísica . 16 (1): 1–153. Código Bib : 2008A y ARv..16....1P. doi :10.1007/s00159-008-0013-x. ISSN  1432-0754. S2CID  121689277.
  7. ^ Payne-Scott, Ruby; Yabsley, DE; Bolton, JG (agosto de 1947). "Tiempos relativos de llegada de ráfagas de ruido solar en diferentes frecuencias de radio". Naturaleza . 160 (4060): 256–257. Código Bib :1947Natur.160..256P. doi :10.1038/160256b0. ISSN  0028-0836. PMID  20256214. S2CID  4064417.
  8. ^ ab Salvaje, JP; McCready, LL (1950). "Observaciones del espectro de radiación solar de alta intensidad en longitudes de onda de metros. I. Los aparatos y tipos espectrales de explosión solar observados". Revista Australiana de Química . 3 (3): 387. Código bibliográfico : 1950AuSRA...3..387W. doi :10.1071/ch9500387. ISSN  0004-9425.
  9. ^ Thompson, A. Richard; Morán, James M.; Swenson, George W. (9 de mayo de 2001). Interferometría y síntesis en radioastronomía (1 ed.). Wiley. doi :10.1002/9783527617845. ISBN 978-0-471-25492-8. S2CID  63993967.
  10. ^ Wild, JP (septiembre de 1970). "Algunas investigaciones de la corona solar: los dos primeros años de observación con el radioheliógrafo Culgoora". Publicaciones de la Sociedad Astronómica de Australia . 1 (8): 365–370. Código Bib : 1970PASA....1..365W. doi :10.1017/S1323358000012364. ISSN  1323-3580. S2CID  118969464.
  11. ^ Kundu, señor; Erickson, WC; Gergely, TE; Mahoney, MJ; Turner, PJ (marzo de 1983). "Primeros resultados del radioheliógrafo multifrecuencia de Clark Lake". Física Solar . 83 (2): 385–389. Código bibliográfico : 1983SoPh...83..385K. doi :10.1007/BF00148288. ISSN  0038-0938. S2CID  122007854.
  12. ^ Wang, Wei; Yan, Yihua; Liu, Fei; Geng, Lihong; Chen, Zhijun; Zhang, Jian; Chen, Linjie; Liu, Donghao (agosto de 2014). "Física solar con radioheliógrafo espectral chino". 2014 XXXI Asamblea General y Simposio Científico de la URSI (URSI GASS) . Pekín, China: IEEE. págs. 1–4. doi :10.1109/URSIGASS.2014.6930043. ISBN 978-1-4673-5225-3. S2CID  38446684.
  13. ^ ab Gary, Dale E.; Keller, Christoph U., eds. (2005). Radiofísica del clima solar y espacial. doi :10.1007/1-4020-2814-8. ISBN 978-1-4020-2813-7.
  14. ^ Zhang, PeiJin; Zucca, Pietro; Kozarev, Kamen; Carley, Eoin; Wang, Chuan Bing; Franzen, Thomas; Dabrowski, Bartosz; Krankowski, Andrzej; Magdalenico, Jasmina; Vocks, cristiano (1 de junio de 2022). "Imágenes del sol tranquilo en el rango de frecuencia de 20 a 80 MHz". La revista astrofísica . 932 (1): 17. arXiv : 2205.00065 . Código Bib : 2022ApJ...932...17Z. doi : 10.3847/1538-4357/ac6b37 . ISSN  0004-637X. S2CID  248496193.
  15. ^ Aerts, Diederik (2009). Greenberger, Daniel; Hentschel, Klaus; Weinert, Friedel (eds.). Compendio de Física Cuántica. Berlín, Heidelberg: Springer Berlín Heidelberg. arXiv : 0811.2516 . Código Bib : 2009cqp..libro.....G. doi :10.1007/978-3-540-70626-7. ISBN 978-3-540-70622-9.
  16. ^ abcdefghijkl Dulk, George A. (1 de septiembre de 1985). "Emisión de radio del sol y las estrellas". Revista Anual de Astronomía y Astrofísica . 23 (1): 169–224. Código bibliográfico : 1985ARA&A..23..169D. doi : 10.1146/annurev.aa.23.090185.001125. ISSN  0066-4146.
  17. ^ abc Física de la Corona Solar. Libros de práctica de Springer. Springer Berlín Heidelberg. 2005. doi :10.1007/3-540-30766-4. ISBN 978-3-540-30765-5.
  18. ^ abcd Melrose, DB (14 de agosto de 1986). Inestabilidades en plasmas espaciales y de laboratorio (1 ed.). Prensa de la Universidad de Cambridge. doi :10.1017/cbo9780511564123. ISBN 978-0-521-30541-9. S2CID  118858944.
  19. ^ Newkirk, Gordon Jr. (1 de mayo de 1961). "La corona solar en regiones activas y el origen térmico del componente que varía lentamente de la radiación de radio solar". La revista astrofísica . 133 : 983. Código bibliográfico : 1961ApJ...133..983N. doi : 10.1086/147104 . ISSN  0004-637X.
  20. ^ Bastián, TS (10 de agosto de 2007). "Emisión de radio sincrotrón a partir de una eyección rápida de masa coronal de halo". La revista astrofísica . 665 (1): 805–812. arXiv : 0704.3108 . Código Bib : 2007ApJ...665..805B. doi : 10.1086/519246 . ISSN  0004-637X. S2CID  17905013.
  21. ^ Blanco, SM; Kundu, señor (1 de agosto de 1997). "Observaciones de radio de la emisión de girorresonancia de campos magnéticos coronales". Física Solar . 174 (1): 31–52. Código bibliográfico : 1997SoPh..174...31W. doi :10.1023/A:1004975528106. ISSN  1573-093X. S2CID  118905521.
  22. ^ Melrose, DB (1 de mayo de 1980). "Los mecanismos de emisión de las ráfagas de radio solares". Reseñas de ciencia espacial . 26 (1): 3–38. Código Bib : 1980SSRv...26....3M. doi :10.1007/BF00212597. ISSN  1572-9672. S2CID  120678291.
  23. ^ abcde Melrose, DB (septiembre de 2008). "Emisión coherente". Actas de la Unión Astronómica Internacional . 4 (S257): 305–315. doi : 10.1017/S1743921309029470 . ISSN  1743-9213. S2CID  18729263.
  24. ^ Tonks, Lewi; Langmuir, Irving (1 de febrero de 1929). "Oscilaciones en gases ionizados". Revisión física . 33 (2): 195–210. Código bibliográfico : 1929PhRv...33..195T. doi : 10.1103/PhysRev.33.195. PMC 1085653 . PMID  16587379. 
  25. ^ Ginzburg, VL; Zhelezniakov, VV (1959). "Sobre los mecanismos de emisión de radio solar esporádica". Simposio - Unión Astronómica Internacional . 9 : 574–582. doi : 10.1017/s0074180900051494 . ISSN  0074-1809.
  26. ^ Robinson, Pensilvania; Cairns, IH (2000), Stone, Robert G.; Weiler, Kurt W.; Goldstein, Melvyn L.; Bougeret, Jean-Louis (eds.), "Teoría de las emisiones de radio solares de tipo III y tipo II", Serie de monografías geofísicas , 119 , Washington, DC: American Geophysical Union: 37–45, Bibcode :2000GMS...119.. .37R, doi :10.1029/gm119p0037, ISBN 978-0-87590-977-6, recuperado 2021-01-18
  27. ^ Cairns, Iver H. (octubre de 1987). "Emisión de plasma fundamental con ondas sonoras de iones". Revista de Física del Plasma . 38 (2): 169-178. Código bibliográfico : 1987JPlPh..38..169C. doi :10.1017/S0022377800012496. ISSN  0022-3778. S2CID  122637160.
  28. ^ Cairns, Iver H. (octubre de 1987). "Emisión de plasma del segundo armónico con ondas sonoras de iones". Revista de Física del Plasma . 38 (2): 179–198. Código bibliográfico : 1987JPlPh..38..179C. doi :10.1017/S0022377800012502. ISSN  1469-7807. S2CID  121885957.
  29. ^ a b C McCauley, Patrick I.; Cairns, Iver H.; Blanco, Stephen M.; Mondal, Surajit; Lenc, Emil; Morgan, Juan; Oberoi, Divya (agosto de 2019). "La corona solar de baja frecuencia en polarización circular". Física Solar . 294 (8): 106. arXiv : 1907.10878 . Código Bib : 2019SoPh..294..106M. doi :10.1007/s11207-019-1502-y. ISSN  0038-0938. S2CID  198901715.
  30. ^ ab McCauley, Patrick I.; Cairns, Iver H.; Morgan, John (1 de octubre de 2018). "Densidades analizadas mediante imágenes de ráfaga de radio coronal tipo III". Física Solar . 293 (10): 132. arXiv : 1808.04989 . Código Bib : 2018SoPh..293..132M. doi :10.1007/s11207-018-1353-y. ISSN  1573-093X. S2CID  119502792.
  31. ^ Reid, Mark J.; Moran, James M. (septiembre de 1981). "Maseros". Revista Anual de Astronomía y Astrofísica . 19 (1): 231–276. Código bibliográfico : 1981ARA&A..19..231R. doi : 10.1146/annurev.aa.19.090181.001311. ISSN  0066-4146.
  32. ^ ab Treumann, Rudolf A. (1 de agosto de 2006). "El máser de electrón-ciclotrón para aplicaciones astrofísicas". La Revista de Astronomía y Astrofísica . 13 (4): 229–315. Código Bib : 2006A y ARv..13..229T. doi :10.1007/s00159-006-0001-y. ISSN  1432-0754. S2CID  122325058.
  33. ^ Wu, CS; Lee, LC (junio de 1979). "Una teoría de la radiación kilométrica terrestre". La revista astrofísica . 230 : 621. Código bibliográfico : 1979ApJ...230..621W. doi :10.1086/157120. ISSN  0004-637X.
  34. ^ Holman, GD; Eichler, D.; Kundu, MR (1980), Kundu, Mukul R.; Gergely, Tomas E. (eds.), "Una interpretación de los picos de microondas de las llamaradas solares como masering girosincrotrón", Radio Física del Sol , Dordrecht: Springer Países Bajos, págs. 457–459, doi :10.1007/978-94-010- 9722-2_65 (inactivo 2024-02-19), ISBN 978-90-277-1121-2, recuperado el 15 de agosto de 2023{{citation}}: Mantenimiento CS1: DOI inactivo a partir de febrero de 2024 ( enlace )
  35. ^ Winglee, RM; Dulk, GA (noviembre de 1986). "La inestabilidad del máser electrón-ciclotrón como fuente del continuo solar tipo V". La revista astrofísica . 310 : 432. Código bibliográfico : 1986ApJ...310..432W. doi :10.1086/164696. ISSN  0004-637X.
  36. ^ Aschwanden, MJ; Benz, AO (1 de septiembre de 1988). "Sobre la inestabilidad del máser electrón-ciclotrón. II. Pulsaciones en estado cuasi estacionario". La revista astrofísica . 332 : 466. Código bibliográfico : 1988ApJ...332..466A. doi :10.1086/166670. ISSN  0004-637X.
  37. ^ Ginzburg, VL (Vitaliĭ Lazarevich), 1916-2009. (1970). La propagación de ondas electromagnéticas en plasmas (2d ed., rev. y enl ed.). Oxford: Prensa de Pérgamo. ISBN 0-08-015569-3. OCLC  153074.{{cite book}}: Mantenimiento CS1: varios nombres: lista de autores ( enlace ) Mantenimiento CS1: nombres numéricos: lista de autores ( enlace )
  38. ^ Koskinen, Hannu EJ (Hannu Erkki Juhani), 1954- (2011). Física de las tormentas espaciales: desde la superficie solar la Tierra. Berlín: Springer. ISBN 978-3-642-00319-6. OCLC  704396917.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  39. ^ Alissandrakis, CE; Chiuderi-Drago, F. (junio de 1994). "Detección de polarización lineal en la emisión de microondas de Regiones Solares Activas". La revista astrofísica . 428 : L73. Código Bib : 1994ApJ...428L..73A. doi : 10.1086/187396 . ISSN  0004-637X.
  40. ^ Schrijver, Carolus J.; Siscoe, George L., eds. (2010). Heliofísica: tormentas espaciales y radiación: causas y efectos. Cambridge: Prensa de la Universidad de Cambridge. doi : 10.1017/cbo9781139194532. ISBN 978-0-521-76051-5.
  41. ^ Spangler, Steven R. (20 de noviembre de 2007). "Una técnica para medir corrientes eléctricas en la corona solar". La revista astrofísica . 670 (1): 841–848. arXiv : astro-ph/0702438 . Código Bib : 2007ApJ...670..841S. doi :10.1086/521995. ISSN  0004-637X. S2CID  12884444.
  42. ^ Ingleby, Laura D.; Spangler, Steven R.; Whiting, Catherine A. (10 de octubre de 2007). "Sondeo de la estructura de plasma a gran escala de la corona solar con mediciones de rotación de Faraday". La revista astrofísica . 668 (1): 520–532. arXiv : astro-ph/0701538 . Código bibliográfico : 2007ApJ...668..520I. doi :10.1086/521140. ISSN  0004-637X. S2CID  11652429.
  43. ^ Sharma, Rohit; Oberoi, Divya (10 de noviembre de 2020). "Efectos de propagación en observaciones solares tranquilas en longitudes de onda de metros". La revista astrofísica . 903 (2): 126. arXiv : 2009.10604 . Código Bib : 2020ApJ...903..126S. doi : 10.3847/1538-4357/abb949 . ISSN  1538-4357. S2CID  221836229.
  44. ^ Stewart, RT (1 de noviembre de 1976). "Alturas de fuente de ráfagas de longitud de onda de metros de tipos espectrales I y III". Física Solar . 50 (2): 437–445. Código bibliográfico : 1976SoPh...50..437S. doi :10.1007/BF00155305. ISSN  1573-093X. S2CID  122229179.
  45. ^ Mann, G.; Breitling, F.; Vocks, C.; Aurass, H.; Steinmetz, M.; Strassmeier, KG; Bisi, MM; Barbechos, RA; Gallagher, P.; Kerdraon, A.; Mackinnon, A. (1 de marzo de 2018). "Seguimiento de un haz de electrones a través de la corona solar con LOFAR". Astronomía y Astrofísica . 611 : A57. Código Bib : 2018A&A...611A..57M. doi : 10.1051/0004-6361/201629017 . hdl : 1885/256646 . ISSN  0004-6361.
  46. ^ Stewart, RT; McLean, DJ (1982). "Corrección de posiciones de fuentes de radio solares de baja frecuencia para la refracción ionosférica". Publicaciones de la Sociedad Astronómica de Australia . 4 (4): 386–389. Código Bib : 1982PASA....4..386S. doi :10.1017/S1323358000021226. ISSN  1323-3580. S2CID  118674983.
  47. ^ Dulk, George A. (2000), "Explosiones de radio solar tipo III en longitudes de onda largas", en Stone, Robert G.; Weiler, Kurt W.; Goldstein, Melvyn L.; Bougeret, Jean-Louis (eds.), Radioastronomía en longitudes de onda largas , Serie de monografías geofísicas, vol. 119, Washington, DC: Unión Geofísica Estadounidense, págs. 115–122, doi :10.1029/gm119p0115, ISBN 978-0-87590-977-6, recuperado 2021-01-18
  48. ^ Bastian, TS (mayo de 1994). "Dispersión angular de la emisión de radio solar por turbulencia coronal". La revista astrofísica . 426 : 774. Código bibliográfico : 1994ApJ...426..774B. doi : 10.1086/174114 . ISSN  0004-637X.
  49. ^ Ingale, M.; Subramanian, P.; Cairns, Iver (11 de marzo de 2015). "La turbulencia coronal y el ensanchamiento angular de las fuentes de radio: el papel de la función estructural". Avisos mensuales de la Real Sociedad Astronómica . 447 (4): 3486–3497. arXiv : 1412.6620 . doi : 10.1093/mnras/stu2703 . ISSN  1365-2966. S2CID  119303147.
  50. ^ Dulk, Georgia; Steinberg, JL; Lecacheux, A.; Hoang, S.; MacDowall, RJ (1985). "La visibilidad de las ráfagas de radio tipo III que se originan detrás del sol". Astronomía y Astrofísica . 150 (2): L28-L30. Código Bib : 1985A y A...150L..28D.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. ^ Robinson, RD (1983). "Dispersión de ondas de radio en la corona solar". Publicaciones de la Sociedad Astronómica de Australia . 5 (2): 208–211. Código Bib : 1983PASA....5..208R. doi :10.1017/S132335800001688X. ISSN  1323-3580. S2CID  118148643.
  52. ^ ab Melrose, DB (febrero de 2006). "Despolarización de ráfagas de radio debido a la reflexión de límites definidos en la corona solar". La revista astrofísica . 637 (2): 1113-1121. arXiv : astro-ph/0507531 . Código bibliográfico : 2006ApJ...637.1113M. doi :10.1086/498499. ISSN  0004-637X. S2CID  18291077.
  53. ^ Emisión de radio del sol y los planetas. Elsevier. 1970. doi :10.1016/c2013-0-02176-7. ISBN 978-0-08-013061-3.
  54. ^ Gary, Dale E.; Keller, Christoph U., eds. (2005). Radiofísica del clima solar y espacial: estado actual y desarrollos futuros. Dordrecht: Springer Países Bajos. doi :10.1007/1-4020-2814-8. ISBN 978-1-4020-2813-7.
  55. ^ Cohen, MH (mayo de 1960). "Acoplamiento de modo magnetoiónico a altas frecuencias". La revista astrofísica . 131 : 664. Código bibliográfico : 1960ApJ...131..664C. doi : 10.1086/146878 . ISSN  0004-637X.
  56. ^ Brosius, JW; Holman, GD; Schmelz, JT (1991). "Observada inversión de polarización de microondas". Eos, Transacciones Unión Geofísica Estadounidense . 72 (42): 449. doi :10.1029/90EO00328. ISSN  0096-3941.
  57. ^ Ryabov, BI; Pilyeva, NA; Alissandrakis, CE; Shibasaki, K.; Bogod, VM; Garaimov, VI; Gelfreikh, GB (1999). "Magnetografía coronal de una región activa a partir de inversión de polarización de microondas". Física Solar . 185 (1): 157-175. Código bibliográfico : 1999SoPh..185..157R. doi :10.1023/A:1005114303703. S2CID  55322639.
  58. ^ Blanco, SM; Thejappa, G.; Kundu, MR (marzo de 1992). "Observaciones de acoplamiento de modos en la corona solar y tormentas de ruido bipolar". Física Solar . 138 (1): 163–187. Código bibliográfico : 1992SoPh..138..163W. doi :10.1007/BF00146202. ISSN  0038-0938. S2CID  120493591.
  59. ^ ELGAROY, EO (1977), "Tormentas de ruido métrico y fenómenos relacionados", Tormentas de ruido solar , Elsevier, págs. 186-209, doi :10.1016/b978-0-08-021039-1.50014-7, ISBN 978-0-08-021039-1, recuperado 2021-01-18
  60. ^ Segunda Euroconferencia de Avances en Física Solar: estructura tridimensional de las regiones solares activas: actas de una reunión celebrada en Preveza, Grecia, del 7 al 11 de octubre de 1997. Alissandrakis, CE (Constantine E.), 1948-, Schmieder, Brigitte. San Francisco, California: Sociedad Astronómica del Pacífico. 1998.ISBN 1-886733-75-9. OCLC  40864809.{{cite book}}: CS1 maint: others (link)
  61. ^ Gergely, Tomás E.; Erickson, William C. (junio de 1975). "Radiación de tormenta decámetro, yo". Física Solar . 42 (2): 467–486. Código bibliográfico : 1975SoPh...42..467G. doi :10.1007/BF00149927. ISSN  0038-0938. S2CID  122851477.
  62. ^ Priest, Eric (2013), "Las ecuaciones básicas de la magnetohidrodinámica (MHD)", Magnetohidrodinámica del sol , Cambridge: Cambridge University Press, págs. 74-106, doi :10.1017/cbo9781139020732.003, ISBN 978-1-139-02073-2, recuperado 2021-01-18
  63. ^ Willson, Robert F. (abril de 2005). "Observaciones SOHO y de matriz muy grande de tormentas de ruido de tipo I, bucles a gran escala y reestructuración magnética en la corona". Física Solar . 227 (2): 311–326. Código bibliográfico : 2005SoPh..227..311W. doi :10.1007/s11207-005-1104-8. ISSN  0038-0938. S2CID  121635113.
  64. ^ Li, CY; Chen, Y.; Wang, B.; Ruan, médico de cabecera; Feng, suroeste; Du, GH; Kong, XL (junio de 2017). "EUV y actividades magnéticas asociadas con explosiones de radio solar tipo I". Física Solar . 292 (6): 82. arXiv : 1705.01666 . Código Bib : 2017SoPh..292...82L. doi :10.1007/s11207-017-1108-1. ISSN  0038-0938. S2CID  119392072.
  65. ^ Benz, AO; Wentzel, DG (1980), "Explosiones de radio solares tipo I: un modelo de onda iónica-acústica", Radiofísica del Sol , Dordrecht: Springer Países Bajos, págs. 251–254, doi :10.1007/978-94-010-9722 -2_34 (inactivo 2024-02-19), ISBN 978-90-277-1121-2, recuperado 2021-01-18{{citation}}: CS1 maint: DOI inactive as of February 2024 (link)
  66. ^ Spicer, DS; Benz, AO; Huba, JD (1982). "Tormentas de ruido solar tipo I y flujo magnético de reciente aparición". Astron. Astrofia . 105 (2): 221–228. Código bibliográfico : 1982A y A...105..221S.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. ^ Del Zanna, G.; Aulanier, G.; Klein, K.-L.; Török, T. (12 de enero de 2011). "Una imagen única para las salidas de corona solar y las tormentas de ruido de radio". Astronomía y Astrofísica . 526 : A137. Código Bib : 2011A y A...526A.137D. doi : 10.1051/0004-6361/201015231 . ISSN  0004-6361.
  68. ^ Bentley, RD; Klein, K.-L.; van Driel-Gesztelyi, L.; Démoulin, P.; Trottet, G.; Tassetto, P.; Marty, G. (2000). "Actividad magnética asociada a tormentas de ruido de radio". Física Solar . 193 (1/2): 227–245. Código bibliográfico : 2000SoPh..193..227B. doi :10.1023/A:1005218007132. S2CID  189821473.
  69. ^ Kumari, Anshu (30 de mayo de 2023). "Estallidos de radio tipo II y su asociación con eyecciones de masa coronal en los ciclos solares 23 y 24". Astronomía y Astrofísica . 675 : A102. arXiv : 2305.18992 . Código Bib : 2023A y A...675A.102K. doi :10.1051/0004-6361/202244015.
  70. ^ Roberts, Ja (1959). "Explosiones de radio solar de tipo espectral II". Revista Australiana de Física . 12 (4): 327. Código bibliográfico : 1959AuJPh..12..327R. doi : 10.1071/PH590327 . ISSN  0004-9506.
  71. ^ Sturrock, PA (octubre de 1961). "Características espectrales de las ráfagas de radio solares de tipo II". Naturaleza . 192 (4797): 58. Bibcode :1961Natur.192...58S. doi : 10.1038/192058a0 . ISSN  0028-0836. S2CID  4145965.
  72. ^ Caña, HV; Stone, RG (julio de 1984). "Estallidos de radio solar de tipo II, choques interplanetarios y eventos de partículas energéticas". La revista astrofísica . 282 : 339. Código bibliográfico : 1984ApJ...282..339C. doi : 10.1086/162207 . ISSN  0004-637X.
  73. ^ Miralles, Mari Paz; Sánchez Almeida, Jorge, eds. (2011). El Sol, el Viento Solar y la Heliosfera. Dordrecht: Springer Países Bajos. doi :10.1007/978-90-481-9787-3. ISBN 978-90-481-9786-6.
  74. ^ Komesaroff, M. (1958). "Medidas de polarización de los tres tipos espectrales de ráfagas de radio solares". Revista Australiana de Física . 11 (2): 201–214. Código bibliográfico : 1958AuJPh..11..201K. doi : 10.1071/ph580201 . ISSN  1446-5582.
  75. ^ abcd McLean, DJ y NR Labrum (1985). Radiofísica solar: Estudios de la emisión del sol en longitudes de onda métricas. Prensa de la Universidad de Cambridge. Código bibliográfico : 1985srph.book.....M.{{cite book}}: CS1 maint: multiple names: authors list (link)
  76. ^ ab Cairns, IH; Robinson, RD (1987). "Estallidos en espiga asociados con la emisión de radio solar tipo II". Física Solar . 111 (2): 365–383. Código bibliográfico : 1987SoPh..111..365C. doi :10.1007/BF00148526. ISSN  0038-0938. S2CID  121422828.
  77. ^ Mann, G.; Melnik, VN; Rucker, HO; Konovalenko, AA; Brazhenko, AI (2018). "Firmas de radio de haces de electrones acelerados por choque en la corona solar". Astronomía y Astrofísica . 609 : A41. Código Bib : 2018A&A...609A..41M. doi : 10.1051/0004-6361/201730546 . ISSN  0004-6361. S2CID  126232064.
  78. ^ abcd Reid, Hamish Andrew Sinclair; Ratcliffe, Heather (julio de 2014). "Una revisión de las ráfagas de radio solares tipo III". Investigación en Astronomía y Astrofísica . 14 (7): 773–804. arXiv : 1404.6117 . Código Bib : 2014RAA....14..773R. doi :10.1088/1674-4527/14/7/003. ISSN  1674-4527. S2CID  118446359.
  79. ^ Robinson, Pensilvania; Cairns, IH (2000), Stone, Robert G.; Weiler, Kurt W.; Goldstein, Melvyn L.; Bougeret, Jean-Louis (eds.), "Teoría de las emisiones de radio solares de tipo III y tipo II", Serie de monografías geofísicas , 119 , Washington, DC: American Geophysical Union: 37–45, Bibcode :2000GMS...119.. .37R, doi :10.1029/gm119p0037, ISBN 978-0-87590-977-6, recuperado 2021-01-23
  80. ^ Benz, Arnold O.; Grigis, Paolo C.; Csillaghy, André; Saint-Hilaire, Pascal (enero de 2005). "Estudio sobre llamaradas de rayos X solares y emisiones de radio coherentes asociadas". Física Solar . 226 (1): 121-142. arXiv : astro-ph/0410436 . Código bibliográfico : 2005SoPh..226..121B. doi :10.1007/s11207-005-5254-5. hdl : 20.500.11850/32984 . ISSN  0038-0938. S2CID  13223464.
  81. ^ Benz, Arnold O.; Brajša, romano; Magdalenić, Jasmina (febrero de 2007). "¿Existen llamaradas solares silenciosas como radio?". Física Solar . 240 (2): 263–270. arXiv : astro-ph/0701570 . Código bibliográfico : 2007SoPh..240..263B. doi :10.1007/s11207-007-0365-9. hdl : 20.500.11850/6161 . ISSN  0038-0938. S2CID  16573386.
  82. ^ Reid, Hamish COMO; Vilmer, Nicole (enero de 2017). "Estallidos de radio coronales tipo III y sus llamaradas de rayos X y sus homólogos interplanetarios de tipo III". Astronomía y Astrofísica . 597 : A77. arXiv : 1609.04743 . Código Bib : 2017A&A...597A..77R. doi : 10.1051/0004-6361/201527758 . ISSN  0004-6361. S2CID  10367177.
  83. ^ McCauley, Patricio I.; Cairns, Iver H.; Morgan, Juan; Gibson, Sarah E.; Harding, James C.; Lonsdale, Colin; Oberoi, Divya (22 de diciembre de 2017). "División de la región de fuente de ráfaga de radio solar tipo III debido a una capa cuasi-separatriz". La revista astrofísica . 851 (2): 151. arXiv : 1711.04930 . Código Bib : 2017ApJ...851..151M. doi : 10.3847/1538-4357/aa9cee . hdl : 20.500.11937/59959 . ISSN  1538-4357. S2CID  55002261.
  84. ^ Frank, Los Ángeles; Gurnett, DA (diciembre de 1972). "Observaciones directas de electrones solares de baja energía asociados con una explosión de radio solar de tipo III". Física Solar . 27 (2): 446–465. Código bibliográfico : 1972SoPh...27..446F. doi :10.1007/bf00153116. ISSN  0038-0938. S2CID  120246109.
  85. ^ Gurnett, fiscal del distrito; Anderson, RR (10 de diciembre de 1976). "Oscilaciones de plasma electrónico asociadas con explosiones de radio tipo III". Ciencia . 194 (4270): 1159-1162. Código bibliográfico : 1976 Ciencia... 194.1159G. doi : 10.1126/ciencia.194.4270.1159. ISSN  0036-8075. PMID  17790910. S2CID  11401604.
  86. ^ Wentzel, Donat G. (enero de 1984). "Polarización de ráfagas de radio fundamentales de tipo III". Física Solar . 90 (1): 139-159. Código bibliográfico : 1984SoPh...90..139W. doi :10.1007/BF00153791. ISSN  0038-0938. S2CID  120710570.
  87. ^ Boischot, A.; Warwick, JW (junio de 1959). "Emisión de radio tras la llamarada del 22 de agosto de 1958". Revista de investigaciones geofísicas . 64 (6): 683–684. Código bibliográfico : 1959JGR....64..683B. doi :10.1029/jz064i006p00683. ISSN  0148-0227.
  88. ^ Morosan, DE; Kilpua, EKJ; Carley, EP; Monstein, C. (marzo de 2019). "Mecanismo de emisión variable de una ráfaga de radio tipo IV". Astronomía y Astrofísica . 623 : A63. arXiv : 1902.01140 . Código Bib : 2019A&A...623A..63M. doi : 10.1051/0004-6361/201834510 . ISSN  0004-6361. S2CID  119359815.
  89. ^ Pick-Gutmann, M. (1961). "Évolución de las emisiones radioeléctricas solares de tipo IV y su relación con otros fenómenos solares y geofísicos". Annales d'Astrophysique . 24 : 183. Código bibliográfico : 1961AnAp...24..183P.
  90. ^ Zheleznyakov, VV y VV Zaitsev (1968). "El origen de las explosiones de radio solar tipo V". Astrónomo soviético . 12 : 14. Código Bib : 1968SvA....12...14Z.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  91. ^ Robinson, RD (diciembre de 1977). "Un estudio de las ráfagas de radio solares tipo V: I: Observaciones". Física Solar . 55 (2): 459–472. Código bibliográfico : 1977SoPh...55..459R. doi :10.1007/BF00152587. ISSN  0038-0938. S2CID  122708771.
  92. ^ Dulk, GA, DE Gary y S. Suzuki (1980). "La posición y polarización de las explosiones solares de tipo V". Astronomía y Astrofísica . 88 (1–2): 218–229. Código bibliográfico : 1980A y A....88..218D.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  93. ^ Tang, JF; Wu, DJ; Bronceado, CM (26 de noviembre de 2013). "Emisión de máser ciclotrón de electrones en arcos coronales y ráfagas de radio solar tipo V". La revista astrofísica . 779 (1): 83. Código bibliográfico : 2013ApJ...779...83T. doi : 10.1088/0004-637X/779/1/83 . ISSN  0004-637X. S2CID  67757119.
  94. ^ Slottje, C. (julio de 1972). "Microestructuras peculiares de absorción y emisión en el estallido de radio solar tipo IV del 2 de marzo de 1970". Física Solar . 25 (1): 210–231. Código bibliográfico : 1972SoPh...25..210S. doi :10.1007/BF00155758. ISSN  0038-0938. S2CID  123199423.
  95. ^ Aurass, H.; Rausche, G.; Mann, G.; Hofmann, A. (13 de mayo de 2005). "La fibra estalla como sonda de campo magnético coronal 3D en bucles posteriores a la llamarada". Astronomía y Astrofísica . 435 (3): 1137-1148. Código Bib : 2005A y A... 435.1137A. doi : 10.1051/0004-6361:20042199 . ISSN  0004-6361.
  96. ^ Reid, Hamish AS (agosto de 2016). "Estallidos solares de tipo III observados con LOFAR". Conferencia Radiocientífica URSI Asia-Pacífico 2016 (URSI AP-RASC) . IEEE. págs. 1235-1238. doi :10.1109/ursiap-rasc.2016.7601384. ISBN 978-1-4673-8801-6. S2CID  19955774.
  97. ^ Kundu, Mukul R.; Vlahos, Loukás (1982). "¿Explosiones de microondas solares? Una revisión". Reseñas de ciencia espacial . 32 (4): 405. Código bibliográfico : 1982SSRv...32..405K. doi :10.1007/BF00177449. ISSN  0038-6308. S2CID  120187753.
  98. ^ Johnston, KJ; Fey, AL; Gaume, RA; Claussen, MJ; Hummel, CA (agosto de 2004). "Observaciones recientes de la emisión de radio en centímetros del sistema T Tauri". La Revista Astronómica . 128 (2): 822–828. Código Bib : 2004AJ....128..822J. doi : 10.1086/422490 . ISSN  0004-6256. S2CID  119664918.
  99. ^ ab Melrose, DB; Rafat, MZ (diciembre de 2017). "Mecanismo de emisión de radio Pulsar: ¿Por qué no hay consenso?". Revista de Física: Serie de conferencias . 932 (1): 012011. Código Bib :2017JPhCS.932a2011M. doi : 10.1088/1742-6596/932/1/012011 . ISSN  1742-6588.
  100. ^ Melrose, DB (junio de 1995). "Los modelos de emisión de radio de púlsares: las cuestiones pendientes". Revista de Astrofísica y Astronomía . 16 (2): 137–164. Código Bib : 1995JApA...16..137M. doi :10.1007/bf02714830. ISSN  0250-6335. S2CID  121747375.

Otras lecturas