stringtranslate.com

Ápside

Los ábsides se refieren a los puntos más lejanos (2) y más cercanos (3) alcanzados por un cuerpo planetario en órbita (2 y 3) con respecto a un cuerpo primario o anfitrión (1).

Un ábside (del griego antiguo ἁψίς ( hapsís )  'arco, bóveda'; pl. ápsides / ˈ æ p s ɪ ˌ d z / AP -sih-deez ) [1] [2] es el punto más lejano o más cercano en el órbita de un cuerpo planetario alrededor de su cuerpo primario . La línea de ábsides es la línea que conecta los dos valores extremos .  

Por ejemplo, para las órbitas alrededor del Sol , los ábsides se denominan afelio (el más lejano) y perihelio (el más cercano). Las dos ábsides de la Luna son el punto más lejano, apogeo , y el punto más cercano, perigeo , de su órbita alrededor de la Tierra anfitriona . Los dos ábsides de la Tierra son el punto más lejano, el afelio , y el punto más cercano, el perihelio , de su órbita alrededor del Sol anfitrión. Los términos afelio y perihelio se aplican de la misma manera a las órbitas de Júpiter y los demás planetas , los cometas y los asteroides del Sistema Solar .

Descripción general

El sistema de dos cuerpos de órbitas elípticas que interactúan : el cuerpo satélite más pequeño (azul) orbita el cuerpo primario (amarillo); ambos están en órbitas elípticas alrededor de su centro de masa común (o baricentro ), (rojo +).
∗Periapsis y apoapsis como distancias: las distancias más pequeña y más grande entre el orbitador y su cuerpo anfitrión.

Hay dos ábsides en cualquier órbita elíptica . El nombre de cada ápside se crea a partir de los prefijos ap- , apo- (de ἀπ(ό) , (ap(o)-)  'lejos de') para el más lejano o peri- (de περί (peri-)  'cerca' ) para el punto más cercano al cuerpo primario , con un sufijo que describe el cuerpo primario. El sufijo de la Tierra es -gee , por lo que los nombres de los ábsides son apogeo y perigeo . Para el Sol, el sufijo es -helion , por lo que los nombres son afelio y perihelio .

Según las leyes del movimiento de Newton , todas las órbitas periódicas son elipses. El baricentro de los dos cuerpos puede encontrarse dentro del cuerpo más grande; por ejemplo, el baricentro Tierra-Luna está aproximadamente a un 75% del camino desde el centro de la Tierra hasta su superficie. Si, en comparación con la masa mayor, la masa menor es insignificante (por ejemplo, en el caso de los satélites), entonces los parámetros orbitales son independientes de la masa menor.

Cuando se usa como sufijo, es decir, -apsis , el término puede referirse a las dos distancias del cuerpo primario al cuerpo en órbita cuando este último está ubicado: 1) en el punto periapsis , o 2) en el punto apoapsis (compárese ambos gráficos, segunda figura). La línea de ábsides denota la distancia de la línea que une los puntos más cercanos y más lejanos a lo largo de una órbita; también se refiere simplemente al rango extremo de un objeto que orbita un cuerpo anfitrión (ver figura superior; ver tercera figura).

En mecánica orbital , los ábsides técnicamente se refieren a la distancia medida entre el centro de masa del cuerpo central y el centro de masa del cuerpo en órbita. Sin embargo, en el caso de una nave espacial , los términos se usan comúnmente para referirse a la altitud orbital de la nave espacial sobre la superficie del cuerpo central (suponiendo un radio de referencia estándar constante).

Elementos orbitales keplerianos : el punto F , el punto de aproximación más cercano de un cuerpo en órbita, es el pericentro (también periapsis) de una órbita; el punto H , el punto más lejano del cuerpo en órbita, es el apocentro (también apoapsis) de la órbita; y la línea roja entre ellos es la línea de ábsides.

Terminología

Las palabras "pericentro" y "apocentro" se ven a menudo, aunque en el uso técnico se prefieren periapsis/apoapsis.

Etimología

Los términos perihelio y afelio fueron acuñados por Johannes Kepler [6] para describir los movimientos orbitales de los planetas alrededor del Sol. Las palabras se forman a partir de los prefijos peri- (griego: περί , cerca) y apo- (griego: ἀπό , lejos de), adjuntos a la palabra griega para sol ( ἥλιος , o hēlíos ). [3]

Se utilizan varios términos relacionados para otros objetos celestes . Los sufijos -gee , -helion , -astron y -galacticon se utilizan con frecuencia en la literatura astronómica cuando se hace referencia a la Tierra, el Sol, las estrellas y el centro galáctico, respectivamente. El sufijo -jove se utiliza ocasionalmente para Júpiter, pero -saturnium se ha utilizado muy raramente en los últimos 50 años para Saturno. La forma -gee también se utiliza como término genérico de aproximación más cercana a "cualquier planeta", en lugar de aplicarlo sólo a la Tierra.

Durante el programa Apolo , los términos pericintión y apocintión se utilizaban para referirse a la órbita de la Luna ; hacen referencia a Cynthia, un nombre alternativo para la diosa griega de la luna Artemisa . [7] Más recientemente, durante el programa Artemisa , se han utilizado los términos perilune y apolune . [8]

Con respecto a los agujeros negros, el término peribotrón fue utilizado por primera vez en un artículo de 1976 por J. Frank y MJ Rees, [9] quienes le dan crédito a WR Stoeger por sugerir la creación de un término usando la palabra griega para hoyo: "bothron".

Los términos perimelasma y apomelasma (de raíz griega) fueron utilizados por el físico y autor de ciencia ficción Geoffrey A. Landis en un artículo publicado en 1998, [10] apareciendo así antes de perinigricon y aponigricon (del latín) en la literatura científica en 2002. [11 ]

Resumen de terminología

Los sufijos que se muestran a continuación se pueden agregar a los prefijos peri- o apo- para formar nombres únicos de ápsides para los cuerpos en órbita del sistema anfitrión/ (primario) indicado . Sin embargo, sólo para los sistemas Tierra, Luna y Sol se utilizan comúnmente los sufijos únicos. Los estudios de exoplanetas suelen utilizar -astron , pero normalmente, para otros sistemas anfitriones, se utiliza el sufijo genérico -apsis . [12] [ verificación fallida ]

Perihelio y afelio

Diagrama de la órbita directa de un cuerpo alrededor del Sol con sus puntos más cercano (perihelio) y más lejano (afelio)

El perihelio (q) y el afelio (Q) son los puntos más cercanos y más lejanos, respectivamente, de la órbita directa de un cuerpo alrededor del Sol .

Comparar elementos osculadores en una época específica con aquellos de una época diferente generará diferencias. El tiempo de paso del perihelio como uno de los seis elementos osculadores no es una predicción exacta (aparte de un modelo genérico de dos cuerpos ) de la distancia mínima real al Sol utilizando el modelo dinámico completo . Las predicciones precisas del paso del perihelio requieren integración numérica .

Planetas interiores y planetas exteriores.

Las dos imágenes siguientes muestran las órbitas, los nodos orbitales y las posiciones del perihelio (q) y el afelio (Q) de los planetas del Sistema Solar [16] vistos desde arriba del polo norte del plano de la eclíptica de la Tierra , que es coplanar con el de la Tierra. plano orbital . Los planetas viajan en sentido antihorario alrededor del Sol y, para cada planeta, la parte azul de su órbita viaja al norte del plano de la eclíptica, la parte rosa viaja al sur y los puntos marcan el perihelio (verde) y el afelio (naranja).

La primera imagen (abajo a la izquierda) muestra los planetas interiores , situados fuera del Sol como Mercurio, Venus, la Tierra y Marte. La órbita terrestre de referencia está coloreada en amarillo y representa el plano orbital de referencia . En el momento del equinoccio de primavera, la Tierra se encuentra en la parte inferior de la figura. La segunda imagen (abajo a la derecha) muestra los planetas exteriores : Júpiter, Saturno, Urano y Neptuno.

Los nodos orbitales son los dos puntos finales de la "línea de nodos" donde la órbita inclinada de un planeta cruza el plano de referencia; [17] aquí pueden ser "vistos" como los puntos donde la sección azul de una órbita se encuentra con la rosa.

Líneas de ábsides

El gráfico muestra el rango extremo, desde el punto más cercano (perihelio) hasta el punto más lejano (afelio), de varios cuerpos celestes en órbita del Sistema Solar : los planetas, los planetas enanos conocidos, incluido Ceres , y el cometa Halley . La longitud de las barras horizontales corresponde al rango extremo de la órbita del cuerpo indicado alrededor del Sol. Estas distancias extremas (entre perihelio y afelio) son las líneas de los ábsides de las órbitas de varios objetos alrededor de un cuerpo huésped.

Astronomical unitAstronomical unitAstronomical unitAstronomical unitAstronomical unitAstronomical unitAstronomical unitAstronomical unitAstronomical unitAstronomical unitHalley's CometSunEris (dwarf planet)Makemake (dwarf planet)Haumea (dwarf planet)PlutoCeres (dwarf planet)NeptuneUranusSaturnJupiterMarsEarthVenusMercury (planet)Astronomical unitAstronomical unitDwarf planetDwarf planetCometPlanet

Distancias de cuerpos seleccionados del Sistema Solar al Sol. Los bordes izquierdo y derecho de cada barra corresponden al perihelio y afelio del cuerpo, respectivamente, por lo que las barras largas denotan una alta excentricidad orbital . El radio del Sol es de 0,7 millones de kilómetros y el radio de Júpiter (el planeta más grande) es de 0,07 millones de kilómetros, ambos demasiado pequeños para resolverlos en esta imagen.

Perihelio y afelio de la Tierra

Actualmente, la Tierra alcanza el perihelio a principios de enero, aproximadamente 14 días después del solsticio de diciembre . En el perihelio, el centro de la Tierra está aproximadamente0,983 29 unidades astronómicas (AU) o 147.098.070 km (91.402.500 millas) del centro del Sol. En cambio, la Tierra alcanza el afelio actualmente a principios de julio, aproximadamente 14 días después del solsticio de junio . La distancia de afelio entre los centros de la Tierra y del Sol es actualmente de aproximadamente1.016 71  AU o 152.097.700 km (94.509.100 mi).

Las fechas del perihelio y afelio cambian con el tiempo debido a la precesión y otros factores orbitales, que siguen patrones cíclicos conocidos como ciclos de Milankovitch . A corto plazo, dichas fechas pueden variar hasta 2 días de un año a otro. [18] Esta variación significativa se debe a la presencia de la Luna: mientras el baricentro Tierra-Luna se mueve en una órbita estable alrededor del Sol, la posición del centro de la Tierra, que está en promedio a unos 4.700 kilómetros (2.900 millas) de la baricentro, podría desplazarse en cualquier dirección desde él, y esto afecta el momento del máximo acercamiento real entre los centros del Sol y de la Tierra (que a su vez define el momento del perihelio en un año determinado). [19]

Debido a la mayor distancia en el afelio, sólo el 93,55% de la radiación del Sol cae sobre un área determinada de la superficie de la Tierra como ocurre en el perihelio, pero esto no tiene en cuenta las estaciones , que resultan más bien de la inclinación del eje de la Tierra de 23,4 ° de distancia de la perpendicular al plano de la órbita de la Tierra. [20] De hecho, tanto en el perihelio como en el afelio es verano en un hemisferio mientras que es invierno en el otro. El invierno cae en el hemisferio donde la luz solar incide menos directamente, y el verano cae donde la luz solar incide más directamente, independientemente de la distancia de la Tierra al Sol.

En el hemisferio norte, el verano coincide con el afelio, cuando la radiación solar es más baja. A pesar de esto, los veranos en el hemisferio norte son en promedio 2,3 °C (4 °F) más cálidos que en el hemisferio sur, porque el hemisferio norte contiene masas de tierra más grandes, que son más fáciles de calentar que los mares. [21]

Sin embargo, el perihelio y el afelio tienen un efecto indirecto sobre las estaciones: debido a que la velocidad orbital de la Tierra es mínima en el afelio y máxima en el perihelio, el planeta tarda más en orbitar desde el solsticio de junio hasta el equinoccio de septiembre que desde el solsticio de diciembre hasta el equinoccio de marzo. Por tanto, el verano en el hemisferio norte dura un poco más (93 días) que el verano en el hemisferio sur (89 días). [22]

Los astrónomos comúnmente expresan el momento del perihelio en relación con el primer punto de Aries no en términos de días y horas, sino más bien como un ángulo de desplazamiento orbital, la llamada longitud del periapsis (también llamada longitud del pericentro). Para la órbita de la Tierra, esto se llama longitud del perihelio , y en 2000 era de aproximadamente 282,895°; en 2010, había avanzado una pequeña fracción de grado hasta aproximadamente 283,067°, [23] es decir, un aumento medio de 62" por año.

Para la órbita de la Tierra alrededor del Sol, el tiempo de la ábside a menudo se expresa en términos de tiempo relativo a las estaciones, ya que esto determina la contribución de la órbita elíptica a las variaciones estacionales. La variación de las estaciones está controlada principalmente por el ciclo anual del ángulo de elevación del Sol, que es resultado de la inclinación del eje de la Tierra medido desde el plano de la eclíptica . La excentricidad de la Tierra y otros elementos orbitales no son constantes, sino que varían lentamente debido a los efectos perturbadores de los planetas y otros objetos del sistema solar (ciclos de Milankovitch).

En una escala temporal muy larga, las fechas del perihelio y del afelio progresan a través de las estaciones y completan un ciclo completo en 22.000 a 26.000 años. Existe un movimiento correspondiente de la posición de las estrellas vistas desde la Tierra, llamado precesión absidal . (Esto está estrechamente relacionado con la precesión de los ejes ). Las fechas y horas de los perihelios y afelios de varios años pasados ​​y futuros se enumeran en la siguiente tabla: [24]

Otros planetas

La siguiente tabla muestra las distancias de los planetas y los planetas enanos al Sol en su perihelio y afelio. [25]

Fórmulas matemáticas

Estas fórmulas caracterizan el pericentro y el apocentro de una órbita:

Pericentro
Velocidad máxima, , a distancia mínima (pericentro), .
Apocentro
Velocidad mínima, , a distancia máxima (apocentro), .

Mientras que, de acuerdo con las leyes del movimiento planetario de Kepler (basadas en la conservación del momento angular ) y la conservación de la energía, estas dos cantidades son constantes para una órbita determinada:

Momento angular relativo específico
Energía orbital específica

dónde:

Tenga en cuenta que para convertir alturas sobre la superficie a distancias entre una órbita y su órbita primaria, se debe sumar el radio del cuerpo central, y viceversa.

La media aritmética de las dos distancias límite es la longitud del semieje mayor a . La media geométrica de las dos distancias es la longitud del semieje menor b .

La media geométrica de las dos velocidades límite es

que es la velocidad de un cuerpo en una órbita circular cuyo radio es .

Tiempo del perihelio

Los elementos orbitales , como el tiempo de paso del perihelio, se definen en la época elegida utilizando una solución de dos cuerpos imperturbada que no tiene en cuenta el problema de los n cuerpos . Para obtener una hora exacta del paso del perihelio, es necesario utilizar una época cercana al paso del perihelio. Por ejemplo, utilizando una época de 1996, el cometa Hale-Bopp muestra el perihelio el 1 de abril de 1997. [26] Utilizando una época de 2008 muestra una fecha de perihelio menos precisa, el 30 de marzo de 1997. [27] Los cometas de período corto pueden ser incluso más sensible a la época seleccionada. El uso de una época de 2005 muestra que 101P/Chernykh llegó al perihelio el 25 de diciembre de 2005, [28] pero el uso de una época de 2012 produce una fecha de perihelio no perturbada menos precisa del 20 de enero de 2006. [29]

La integración numérica muestra que el planeta enano Eris llegará al perihelio alrededor de diciembre de 2257. [31] Utilizando una época de 2021, que es 236 años antes, muestra con menos precisión que Eris llegará al perihelio en 2260. [32]

4 Vesta llegó al perihelio el 26 de diciembre de 2021, [33] pero el uso de una solución de dos cuerpos en una época de julio de 2021 muestra con menor precisión que Vesta llegó al perihelio el 25 de diciembre de 2021. [34]

Arcos cortos

Los objetos transneptunianos descubiertos a más de 80 UA del Sol necesitan docenas de observaciones durante varios años para limitar bien sus órbitas porque se mueven muy lentamente contra las estrellas de fondo. Debido a las estadísticas de números pequeños, los objetos transneptunianos como 2015 TH 367 , cuando solo tuvo 8 observaciones en un arco de observación de 1 año, que no han llegado o no llegarán al perihelio durante aproximadamente 100 años, pueden tener una incertidumbre de 1 sigma de 77,3 años (28.220 días) en la fecha del perihelio. [35]

Ver también

Referencias

  1. ^ "ábside". Dictionary.com íntegro (en línea). Dakota del Norte
  2. ^ "ábside". Diccionario de la herencia americana de la lengua inglesa (5ª ed.). HarperCollins.
  3. ^ ab Dado que el Sol, Ἥλιος en griego, comienza con una vocal (H es la vocal ē larga en griego), la o final en "apo" se omite en el prefijo. =La pronunciación "Ap-helion" aparece en muchos diccionarios [1] Archivado el 22 de diciembre de 2015 en Wayback Machine , pronunciando la "p" y la "h" en sílabas separadas. Sin embargo, la pronunciación / ə ˈ f l i ə n / [2] Archivado el 29 de julio de 2017 en Wayback Machine también es común ( p. ej., Diccionario McGraw Hill de términos científicos y técnicos, quinta edición, 1994, p. 114 ), ya que en griego tardío, la 'p' de ἀπό seguida de la 'h' de ἥλιος se convierte en phi; por tanto, la palabra griega es αφήλιον. (véase, por ejemplo, Walker, John, A Key to the Classical Pronunciation of Greek, Latin, and Scripture Proper Names , Townsend Young 1859 [3] Archivado el 21 de septiembre de 2019 en Wayback Machine , página 26.) Muchos [4 ] los diccionarios dan ambas pronunciaciones
  4. ^ Chisholm, Hugh , ed. (1911). "Perigeo"  . Enciclopedia Británica . vol. 21 (11ª ed.). Prensa de la Universidad de Cambridge. pag. 149.
  5. ^ abcd "Conceptos básicos de los vuelos espaciales". NASA. Archivado desde el original el 30 de septiembre de 2019 . Consultado el 30 de mayo de 2017 .
  6. ^ Klein, Ernest, Diccionario etimológico completo de la lengua inglesa , Elsevier, Amsterdam, 1965. (Versión archivada)
  7. ^ "Informe de la misión Apolo 15". Glosario . Archivado desde el original el 19 de marzo de 2010 . Consultado el 16 de octubre de 2009 .
  8. ^ R. Dendy; D. Železnikar; M. Zemba (27 de septiembre de 2021). Exploración lunar de la NASA: enlaces de comunicaciones de los elementos de propulsión y potencia de Gateway. 38ª Conferencia Internacional de Sistemas de Comunicaciones por Satélite (ICSSC). Arlington, Virginia. Archivado desde el original el 29 de marzo de 2022 . Consultado el 18 de julio de 2022 .
  9. ^ Frank, J.; Rees, MJ (1 de septiembre de 1976). "Efectos de los agujeros negros masivos en sistemas estelares densos". MNRAS . 176 (6908): 633–646. Código bibliográfico : 1976MNRAS.176..633F. doi : 10.1093/mnras/176.3.633 .
  10. Perimelasma Archivado el 25 de febrero de 2019 en Wayback Machine , por Geoffrey Landis, publicado por primera vez en Asimov's Science Fiction , enero de 1998, republicado en Infinity Plus
  11. ^ R. Schödel; T. Ott; R. Genzel; R. Hofmann; el señor Lehnert; A.Eckart; N. Mouawad; T. Alejandro; MJ Reid; R. Lenzen; M. Hartung; F. Lacombe; D. Ruán; E. Gendrón; G. Rousset; SOY. Lagrange; W. Brandner; N. Ageorges; C. Lidman; AFMMoorwood; J. Spyromilio; N. Hubin; KM Menten (17 de octubre de 2002). "Una estrella en una órbita de 15,2 años alrededor del agujero negro supermasivo en el centro de la Vía Láctea". Naturaleza . 419 (6908): 694–696. arXiv : astro-ph/0210426 . Código Bib :2002Natur.419..694S. doi : 10.1038/naturaleza01121. PMID  12384690. S2CID  4302128.
  12. ^ "MAVEN» Órbita científica ". Archivado desde el original el 8 de noviembre de 2018 . Consultado el 7 de noviembre de 2018 .
  13. ^ "Dawn Journal: 11 años en el espacio". www.planetario.org . Archivado desde el original el 24 de octubre de 2018 . Consultado el 24 de octubre de 2018 .
  14. ^ Cecconi, B.; Lamy, L.; Zarka, P.; Prangé, R.; Kurth, WS; Louarn, P. (4 de marzo de 2009). "Estudio goniopolarimétrico de la pericrona de la revolución 29 utilizando el receptor de radio de alta frecuencia del instrumento Cassini Radio y Plasma Wave Science". Revista de investigación geofísica: física espacial . 114 (A3): A03215. Código Bib : 2009JGRA..114.3215C. doi :10.1029/2008JA013830. Archivado desde el original el 9 de diciembre de 2019 . Consultado el 9 de diciembre de 2019 a través de ui.adsabs.harvard.edu.
  15. ^ Ejemplo de uso: McKevitt, James; Bulla, Sofía; Dixon, Tom; Criscola, Franco; Parkinson-Swift, Jonathan; Bornberg, Cristina; Singh, Jaspreet; Patel, Kuren; Laad, ario; Forder, Ethan; Ayin-Walsh, Louis; Beegadhur, Shayne; Casado, Paul; Pappula, Bharath Simha Reddy; McDougall, Thomas; Foghis, Madalin; Kent, Jack; Morgan, James; Raj, Utkarsh; Heinreichsberger, Carina (18 de junio de 2021). "Un observatorio polivalente de clase L y una plataforma científica para Neptuno". Actas de la Conferencia Global de Exploración Espacial de 2021 . arXiv : 2106.09409 .
  16. ^ "la definición de ábside". Diccionario.com . Archivado desde el original el 8 de diciembre de 2015 . Consultado el 28 de noviembre de 2015 .
  17. ^ Cariño, David. "línea de nodos". La enciclopedia de astrobiología, astronomía y vuelos espaciales . Archivado desde el original el 23 de agosto de 2019 . Consultado el 17 de mayo de 2007 .
  18. ^ "Perihelio, Afelio y los solsticios". timeanddate.com. Archivado desde el original el 3 de enero de 2018 . Consultado el 10 de enero de 2018 .
  19. ^ "Variación en los tiempos de perihelio y afelio". Departamento de Aplicaciones Astronómicas del Observatorio Naval de Estados Unidos. 11 de agosto de 2011. Archivado desde el original el 11 de enero de 2018 . Consultado el 10 de enero de 2018 .
  20. ^ "Exploración del sistema solar: ciencia y tecnología: características científicas: ¿clima, clima, en todas partes?". NASA . Archivado desde el original el 29 de septiembre de 2015 . Consultado el 19 de septiembre de 2015 .
  21. ^ "Tierra en Afelio". Clima espacial. Julio de 2008. Archivado desde el original el 17 de julio de 2015 . Consultado el 7 de julio de 2015 .
  22. ^ Rockport, Steve C. "¿Cuánto afecta el afelio a nuestro clima? Estamos en el afelio en verano. ¿Nuestros veranos serían más cálidos si estuviéramos en el perihelio?". Planetario . Universidad del Sur de Maine . Archivado desde el original el 6 de julio de 2020 . Consultado el 4 de julio de 2020 .
  23. ^ "Data.GISS: parámetros orbitales de la Tierra". datos.giss.nasa.gov . Archivado desde el original el 2 de octubre de 2015.
  24. ^ Espenak, Fred. "Tierra en Perihelio y Afelio: 2001 a 2100". astropíxeles . Archivado desde el original el 13 de julio de 2021 . Consultado el 24 de junio de 2021 .
  25. ^ "Cuadro comparativo planetario de la NASA". Archivado desde el original el 4 de agosto de 2016 . Consultado el 4 de agosto de 2016 .
  26. ^ "JPL SBDB: Hale-Bopp (época 1996)". Archivado desde el original el 16 de julio de 2020 . Consultado el 16 de julio de 2020 .
  27. ^ "JPL SBDB: Hale-Bopp". Archivado desde el original el 17 de julio de 2020 . Consultado el 16 de julio de 2020 .
  28. ^ "101P/Chernykh - A (NK 1293) de Syuichi Nakano". Archivado desde el original el 3 de octubre de 2020 . Consultado el 17 de julio de 2020 .
  29. ^ JPL SBDB: 101P/Chernykh (época 2012)
  30. ^ "Lote de Horizons para 12P / Pons-Brooks (90000223) el 21 de abril de 2024 a las 03:20" (El perihelio ocurre cuando rdot cambia de negativo a positivo). Horizontes JPL . Archivado desde el original el 12 de febrero de 2023 . Consultado el 11 de febrero de 2023 .(JPL#K242/3 Fecha de disolución: 24 de octubre de 2022)
  31. ^ "Lote de horizontes para Eris en el perihelio alrededor del 7 de diciembre de 2257 ± 2 semanas". JPL Horizons (El perihelio ocurre cuando rdot cambia de negativo a positivo. El JPL SBDB enumera genéricamente (incorrectamente) una fecha de perihelio de dos cuerpos imperturbable en 2260). Laboratorio de Propulsión a Chorro. Archivado desde el original el 13 de septiembre de 2021 . Consultado el 13 de septiembre de 2021 .
  32. ^ "JPL SBDB: Eris (época 2021)". Archivado desde el original el 31 de enero de 2018 . Consultado el 5 de enero de 2021 .
  33. ^ "Lote de Horizons para 4 Vesta el 26 de diciembre de 2021" (El perihelio ocurre cuando rdot cambia de negativo a positivo). Horizontes JPL . Archivado desde el original el 26 de septiembre de 2021 . Consultado el 26 de septiembre de 2021 .(Epoca 2021-01-jul/Fecha.sol.: 2021-13-abr)
  34. ^ JPL SBDB: 4 Vesta (época 2021)
  35. ^ "JPL SBDB: 2015 TH367". Archivado desde el original el 14 de marzo de 2018 . Consultado el 23 de septiembre de 2021 .{{cite web}}: CS1 maint: bot: original URL status unknown (link)

enlaces externos