stringtranslate.com

Radio

Una granja de antenas que alberga varias antenas de radio en Sandia Peak , cerca de Albuquerque, Nuevo México , Estados Unidos

La radio es la tecnología de comunicación mediante ondas de radio . [1] [2] [3] Las ondas de radio son ondas electromagnéticas de frecuencia entre 3  hercios (Hz) y 300  gigahercios (GHz). Son generadas por un dispositivo electrónico llamado transmisor conectado a una antena que irradia energía eléctrica oscilante, a menudo caracterizada como una onda . Pueden ser recibidas por otras antenas conectadas a un receptor de radio , este es el principio fundamental de la comunicación por radio. Además de la comunicación, la radio se utiliza para radar , radionavegación , control remoto , teledetección y otras aplicaciones.

En las comunicaciones por radio , que se utilizan en la radiodifusión y la televisión , los teléfonos móviles, las radios bidireccionales , las redes inalámbricas y las comunicaciones por satélite , entre otros muchos usos, las ondas de radio se utilizan para transportar información a través del espacio desde un transmisor a un receptor, modulando la señal de radio (imprimiendo una señal de información en la onda de radio variando algún aspecto de la onda) en el transmisor. En el radar, que se utiliza para localizar y rastrear objetos como aviones, barcos, naves espaciales y misiles, un haz de ondas de radio emitido por un transmisor de radar se refleja en el objeto objetivo y las ondas reflejadas revelan la ubicación del objeto a un receptor que normalmente está ubicado junto al transmisor. En los sistemas de radionavegación como el GPS y el VOR , un instrumento de navegación móvil recibe señales de radio de varias radiobalizas de navegación cuya posición se conoce y, midiendo con precisión el tiempo de llegada de las ondas de radio, el receptor puede calcular su posición en la Tierra. En los dispositivos de control remoto por radio inalámbricos como los drones , los abridores de puertas de garaje y los sistemas de entrada sin llave , las señales de radio transmitidas desde un dispositivo controlador controlan las acciones de un dispositivo remoto.

La existencia de las ondas de radio fue probada por primera vez por el físico alemán Heinrich Hertz el 11 de noviembre de 1886. [4] A mediados de la década de 1890, basándose en las técnicas que utilizaban los físicos para estudiar las ondas electromagnéticas, Guglielmo Marconi desarrolló el primer aparato para la comunicación por radio a larga distancia, [5] enviando un mensaje inalámbrico en código Morse a un destinatario a más de un kilómetro de distancia en 1895, [6] y la primera señal transatlántica el 12 de diciembre de 1901. [7] La ​​primera transmisión de radio comercial se transmitió el 2 de noviembre de 1920, cuando los resultados en vivo de la elección presidencial Harding-Cox fueron transmitidos por Westinghouse Electric and Manufacturing Company en Pittsburgh, bajo el indicativo KDKA . [8]

La emisión de ondas de radio está regulada por una ley, coordinada por la Unión Internacional de Telecomunicaciones (UIT), que asigna bandas de frecuencia en el espectro radioeléctrico para diversos usos.

Etimología

La palabra radio se deriva del latín radio , que significa "radio de una rueda, haz de luz, rayo". Se aplicó por primera vez a las comunicaciones en 1881 cuando, por sugerencia del científico francés Ernest Mercadier  [fr] , Alexander Graham Bell adoptó radiófono (que significa "sonido irradiado") como nombre alternativo para su sistema de transmisión óptica fotófono . [9] [10]

Tras el descubrimiento de Hertz de la existencia de ondas de radio en 1886, el término ondas hertzianas se utilizó inicialmente para esta radiación. [11] Los primeros sistemas prácticos de comunicación por radio, desarrollados por Marconi en 1894-1895, transmitían señales telegráficas mediante ondas de radio, [4] por lo que la comunicación por radio se denominó primero telegrafía sin hilos . Hasta aproximadamente 1910, el término telegrafía sin hilos también incluía una variedad de otros sistemas experimentales para transmitir señales telegráficas sin cables, incluida la inducción electrostática , la inducción electromagnética y la conducción acuática y terrestre , por lo que existía la necesidad de un término más preciso que se refiriera exclusivamente a la radiación electromagnética. [12] [13]

El físico francés Édouard Branly , que en 1890 desarrolló el coherer detector de ondas de radio , lo llamó en francés radio-conducteur . [14] [15] El prefijo radio- se utilizó más tarde para formar palabras descriptivas compuestas y con guion, especialmente en Europa. Por ejemplo, a principios de 1898, la publicación británica The Practical Engineer incluyó una referencia al radiotelégrafo y la radiotelegrafía . [14] [16]

El uso de radio como palabra independiente se remonta al menos al 30 de diciembre de 1904, cuando las instrucciones emitidas por la Oficina Postal Británica para transmitir telegramas especificaron que "La palabra 'Radio'... se envía en las Instrucciones de Servicio". [14] [17] Esta práctica fue adoptada universalmente, y la palabra "radio" se introdujo internacionalmente, mediante la Convención Radiotelegráfica de Berlín de 1906, que incluía un Reglamento de Servicio que especificaba que "Los radiotelegramas deberán mostrar en el preámbulo que el servicio es 'Radio ' ". [14]

El cambio a la radio en lugar de la tecnología inalámbrica se produjo de forma lenta y desigual en el mundo angloparlante. Lee de Forest ayudó a popularizar la nueva palabra en los Estados Unidos: a principios de 1907, fundó la DeForest Radio Telephone Company, y su carta en el Electrical World del 22 de junio de 1907 sobre la necesidad de restricciones legales advertía que "el caos de la radio será sin duda el resultado hasta que se aplique una regulación tan estricta". [18] La Marina de los Estados Unidos también desempeñaría un papel. Aunque su traducción de la Convención de Berlín de 1906 utilizó los términos telégrafo inalámbrico y telegrama inalámbrico , en 1912 comenzó a promover el uso de la radio en su lugar. El término comenzó a ser preferido por el público en general en la década de 1920 con la introducción de la radiodifusión.

Historia

Las ondas electromagnéticas fueron predichas por James Clerk Maxwell en su teoría del electromagnetismo de 1873 , ahora llamada ecuaciones de Maxwell , quien propuso que un campo eléctrico oscilante acoplado y un campo magnético podrían viajar a través del espacio como una onda, y propuso que la luz consistía en ondas electromagnéticas de longitud de onda corta . El 11 de noviembre de 1886, el físico alemán Heinrich Hertz , intentando confirmar la teoría de Maxwell, observó por primera vez ondas de radio que generó utilizando un transmisor de chispa primitivo . [4] Los experimentos de Hertz y los físicos Jagadish Chandra Bose , Oliver Lodge , Lord Rayleigh y Augusto Righi , entre otros, mostraron que las ondas de radio como la luz demostraban reflexión, refracción , difracción , polarización , ondas estacionarias y viajaban a la misma velocidad que la luz, lo que confirma que tanto la luz como las ondas de radio eran ondas electromagnéticas, que solo se diferenciaban en la frecuencia. [19] En 1895, Guglielmo Marconi desarrolló el primer sistema de comunicación por radio, utilizando un transmisor de chispa para enviar código Morse a largas distancias. En diciembre de 1901, había transmitido a través del Océano Atlántico. [4] [5] [6] [7] Marconi y Karl Ferdinand Braun compartieron el Premio Nobel de Física de 1909 "por sus contribuciones al desarrollo de la telegrafía inalámbrica". [20]

Durante las dos primeras décadas de la radio, llamadas la era de la radiotelegrafía , los transmisores de radio primitivos solo podían transmitir pulsos de ondas de radio, no las ondas continuas que se necesitaban para la modulación de audio , por lo que la radio se utilizó para mensajes de texto comerciales, diplomáticos y militares de persona a persona. A partir de 1908, los países industriales construyeron redes mundiales de potentes transmisores transoceánicos para intercambiar tráfico de telegramas entre continentes y comunicarse con sus colonias y flotas navales. Durante la Primera Guerra Mundial, el desarrollo de transmisores de radio de onda continua , detectores de receptores de radio de cristal y rectificadores electrolíticos permitieron que Reginald Fessenden y otros lograran la radiotelefonía de modulación de amplitud (AM) , lo que permitió la transmisión de audio . El 2 de noviembre de 1920, la primera transmisión de radio comercial fue transmitida por Westinghouse Electric and Manufacturing Company en Pittsburgh, bajo el indicativo KDKA, con cobertura en vivo de la elección presidencial de Harding-Cox . [8]

Tecnología

Las ondas de radio son radiadas por cargas eléctricas que experimentan aceleración . [21] [22] Se generan artificialmente mediante corrientes eléctricas que varían en el tiempo y que consisten en electrones que fluyen de un lado a otro en un conductor metálico llamado antena . [23] [24]

A medida que se alejan de la antena transmisora, las ondas de radio se dispersan, por lo que la intensidad de su señal ( intensidad en vatios por metro cuadrado) disminuye (ver Ley del cuadrado inverso ), por lo que las transmisiones de radio solo se pueden recibir dentro de un rango limitado del transmisor, la distancia depende de la potencia del transmisor, el patrón de radiación de la antena , la sensibilidad del receptor, el nivel de ruido de fondo y la presencia de obstrucciones entre el transmisor y el receptor . Una antena omnidireccional transmite o recibe ondas de radio en todas las direcciones, mientras que una antena direccional transmite ondas de radio en un haz en una dirección particular, o recibe ondas de una sola dirección. [25] [26] [27] [28]

Las ondas de radio viajan a la velocidad de la luz en el vacío [29] y a una velocidad ligeramente menor en el aire. [30]

Además de las ondas de radio, otros tipos de ondas electromagnéticas ( infrarrojas , luz visible , ultravioleta , rayos X y rayos gamma ) también pueden transportar información y utilizarse para la comunicación. El amplio uso de las ondas de radio para las telecomunicaciones se debe principalmente a sus deseables propiedades de propagación derivadas de su mayor longitud de onda. [24]

Comunicación por radio

Comunicación por radio. La información, como el sonido, se convierte mediante un transductor, como un micrófono , en una señal eléctrica que modula una onda de radio producida por el transmisor . Un receptor intercepta la onda de radio y extrae la señal de modulación portadora de información, que se convierte de nuevo a un formato utilizable por el ser humano con otro transductor, como un altavoz .
Comparación de ondas de radio moduladas AM y FM

En los sistemas de comunicación por radio, la información se transmite a través del espacio mediante ondas de radio. En el extremo emisor, la información que se va a enviar se convierte mediante algún tipo de transductor en una señal eléctrica variable en el tiempo llamada señal de modulación. [24] [31] La señal de modulación puede ser una señal de audio que representa el sonido de un micrófono , una señal de vídeo que representa imágenes en movimiento de una cámara de vídeo o una señal digital que consiste en una secuencia de bits que representan datos binarios de una computadora. La señal de modulación se aplica a un transmisor de radio . En el transmisor, un oscilador electrónico genera una corriente alterna que oscila a una frecuencia de radio , llamada onda portadora porque sirve para generar las ondas de radio que "transportan" la información a través del aire. La señal de información se utiliza para modular la portadora, variando algún aspecto de la onda portadora, imprimiendo la información en la portadora. Diferentes sistemas de radio utilizan diferentes métodos de modulación : [32]

También se utilizan muchos otros tipos de modulación. En algunos tipos, no se transmite una onda portadora, sino solo una o ambas bandas laterales de modulación . [34]

La portadora modulada se amplifica en el transmisor y se aplica a una antena transmisora ​​que irradia la energía en forma de ondas de radio. Las ondas de radio llevan la información a la ubicación del receptor. [35] En el receptor, la onda de radio induce un pequeño voltaje oscilante en la antena receptora que es una réplica más débil de la corriente en la antena transmisora. [24] [31] Este voltaje se aplica al receptor de radio , que amplifica la señal de radio débil para que sea más fuerte, luego la demodula , extrayendo la señal de modulación original de la onda portadora modulada. La señal de modulación se convierte mediante un transductor a una forma utilizable por humanos: una señal de audio se convierte en ondas de sonido mediante un altavoz o auriculares, una señal de video se convierte en imágenes mediante una pantalla , mientras que una señal digital se aplica a una computadora o microprocesador, que interactúa con usuarios humanos. [32]

Las ondas de radio de muchos transmisores pasan por el aire simultáneamente sin interferirse entre sí porque las ondas de radio de cada transmisor oscilan a una velocidad diferente, en otras palabras, cada transmisor tiene una frecuencia diferente , medida en hercios (Hz), kilohercios (kHz), megahercios (MHz) o gigahercios (GHz). La antena receptora normalmente capta las señales de radio de muchos transmisores. El receptor utiliza circuitos sintonizados para seleccionar la señal de radio deseada de entre todas las señales captadas por la antena y rechazar las demás. Un circuito sintonizado (también llamado circuito resonante o circuito tanque) actúa como un resonador , similar a un diapasón . [31] Tiene una frecuencia de resonancia natural a la que oscila. La frecuencia de resonancia del circuito sintonizado del receptor es ajustada por el usuario a la frecuencia de la estación de radio deseada; esto se llama "sintonización". La señal de radio oscilante de la estación deseada hace que el circuito sintonizado resuene , oscile en sintonía y transmita la señal al resto del receptor. Las señales de radio en otras frecuencias son bloqueadas por el circuito sintonizado y no se transmiten. [36]

Ancho de banda

Espectro de frecuencia de una señal de radio AM o FM modulada típica. Consta de un componente C en la frecuencia de la onda portadora con la información ( modulación ) contenida en dos bandas estrechas de frecuencias llamadas bandas laterales ( SB ) justo por encima y por debajo de la frecuencia portadora.

Una onda de radio modulada, que transporta una señal de información, ocupa un rango de frecuencias . La información ( modulación ) en una señal de radio se concentra generalmente en bandas de frecuencia estrechas llamadas bandas laterales ( SB ) justo por encima y por debajo de la frecuencia portadora . El ancho en hercios del rango de frecuencia que ocupa la señal de radio, la frecuencia más alta menos la frecuencia más baja, se llama su ancho de banda ( BW ). [32] [37] Para cualquier relación señal-ruido dada , una cantidad de ancho de banda puede transportar la misma cantidad de información ( velocidad de datos en bits por segundo) independientemente de dónde se encuentre en el espectro de frecuencia de radio, por lo que el ancho de banda es una medida de la capacidad de transporte de información . El ancho de banda requerido por una transmisión de radio depende de la velocidad de datos de la información (señal de modulación) que se envía y de la eficiencia espectral del método de modulación utilizado; cuántos datos puede transmitir en cada kilohercio de ancho de banda. Los diferentes tipos de señales de información transportadas por radio tienen diferentes velocidades de datos. Por ejemplo, una señal de televisión (video) tiene una mayor velocidad de datos que una señal de audio . [32] [38]

El espectro radioeléctrico , el rango total de frecuencias de radio que se pueden utilizar para la comunicación en un área determinada, es un recurso limitado. [37] [3] Cada transmisión de radio ocupa una porción del ancho de banda total disponible. El ancho de banda de radio se considera un bien económico que tiene un costo monetario y cuya demanda es cada vez mayor. En algunas partes del espectro radioeléctrico, el derecho a utilizar una banda de frecuencia o incluso un solo canal de radio se compra y se vende por millones de dólares. Por lo tanto, existe un incentivo para emplear tecnología que minimice el ancho de banda utilizado por los servicios de radio. [38]

A finales de los años 1990 se inició una transición lenta de las tecnologías de transmisión de radio analógicas a las digitales . [39] [40] Parte de la razón para ello es que la modulación digital a menudo puede transmitir más información (una mayor tasa de datos) en un ancho de banda determinado que la modulación analógica , mediante el uso de algoritmos de compresión de datos , que reducen la redundancia en los datos a enviar, y una modulación más eficiente. Otras razones para la transición es que la modulación digital tiene una mayor inmunidad al ruido que la analógica, los chips de procesamiento de señales digitales tienen más potencia y flexibilidad que los circuitos analógicos, y se puede transmitir una amplia variedad de tipos de información utilizando la misma modulación digital. [32]

Debido a que es un recurso fijo que demanda un número cada vez mayor de usuarios, el espectro radioeléctrico se ha congestionado cada vez más en las últimas décadas, y la necesidad de usarlo de manera más efectiva está impulsando muchas innovaciones de radio adicionales, como los sistemas de radio troncalizados , la transmisión de espectro ensanchado (banda ultra ancha), la reutilización de frecuencias , la gestión dinámica del espectro , la agrupación de frecuencias y la radio cognitiva . [38]

Bandas de frecuencia de la UIT

La UIT divide arbitrariamente el espectro radioeléctrico en 12 bandas, cada una de las cuales comienza en una longitud de onda que es una potencia de diez (10 n ) metros, con una frecuencia correspondiente de 3 veces una potencia de diez, y cada una cubre una década de frecuencia o longitud de onda. [3] [41] Cada una de estas bandas tiene un nombre tradicional: [42]

Se puede observar que el ancho de banda , el rango de frecuencias, contenido en cada banda no es igual sino que aumenta exponencialmente a medida que aumenta la frecuencia; cada banda contiene diez veces el ancho de banda de la banda anterior. [43]

El término "frecuencia tremendamente baja" (TLF) se ha utilizado para longitudes de onda de 1 a 3 Hz (300 000 a 100 000 km), [44] aunque la UIT no ha definido el término. [42]

Regulación

Las ondas de radio son un recurso compartido por muchos usuarios. Dos transmisores de radio en la misma zona que intenten transmitir en la misma frecuencia interferirán entre sí, lo que provocará una recepción distorsionada, por lo que es posible que ninguna de las transmisiones se reciba con claridad. [37] La ​​interferencia con las transmisiones de radio no solo puede tener un gran costo económico, sino que también puede poner en peligro la vida (por ejemplo, en el caso de interferencias con las comunicaciones de emergencia o el control del tráfico aéreo ). [45] [46]

Para evitar interferencias entre diferentes usuarios, la emisión de ondas de radio está estrictamente regulada por leyes nacionales, coordinadas por un organismo internacional, la Unión Internacional de Telecomunicaciones (UIT), que asigna bandas en el espectro radioeléctrico para diferentes usos. [37] [3] Los transmisores de radio deben tener licencia de los gobiernos, bajo una variedad de clases de licencia según el uso, y están restringidos a ciertas frecuencias y niveles de potencia. En algunas clases, como las estaciones de transmisión de radio y televisión, al transmisor se le da un identificador único que consiste en una cadena de letras y números llamada indicativo de llamada , que debe usarse en todas las transmisiones. [47] Para ajustar, mantener o reparar internamente transmisores de radioteléfono, las personas deben tener una licencia gubernamental, como la licencia general de operador de radioteléfono en los EE. UU., obtenida al tomar una prueba que demuestre un conocimiento técnico y legal adecuado de la operación segura de la radio. [48]

Las excepciones a las reglas anteriores permiten la operación sin licencia por parte del público de transmisores de corto alcance de baja potencia en productos de consumo como teléfonos celulares, teléfonos inalámbricos , dispositivos inalámbricos , walkie-talkies , radios de banda ciudadana , micrófonos inalámbricos , abridores de puertas de garaje y monitores de bebés . En los EE. UU., estos se incluyen en la Parte 15 de las regulaciones de la Comisión Federal de Comunicaciones (FCC). Muchos de estos dispositivos utilizan las bandas ISM , una serie de bandas de frecuencia en todo el espectro radioeléctrico reservadas para uso sin licencia. Aunque pueden operarse sin licencia, como todos los equipos de radio, estos dispositivos generalmente deben ser aprobados antes de la venta. [49]

Aplicaciones

A continuación se presentan algunos de los usos más importantes de la radio, organizados por función.

Radiodifusión

La radiodifusión es la transmisión unidireccional de información desde un transmisor a receptores pertenecientes a una audiencia pública. [50] Dado que las ondas de radio se debilitan con la distancia, una estación de radiodifusión solo puede recibirse dentro de una distancia limitada de su transmisor. [51] Los sistemas que transmiten desde satélites generalmente pueden recibirse en todo un país o continente. La radio y la televisión terrestres más antiguas se pagan con publicidad comercial o los gobiernos. En los sistemas de suscripción como la televisión y la radio por satélite , el cliente paga una tarifa mensual. En estos sistemas, la señal de radio está encriptada y solo puede ser descifrada por el receptor, que está controlado por la empresa y puede desactivarse si el cliente no paga. [52]

La radiodifusión utiliza varias partes del espectro radioeléctrico, dependiendo del tipo de señales transmitidas y del público objetivo deseado. Las señales de onda larga y media pueden dar una cobertura confiable de áreas de varios cientos de kilómetros de ancho, pero tienen una capacidad de transporte de información más limitada y, por lo tanto, funcionan mejor con señales de audio (voz y música), y la calidad del sonido puede degradarse por el ruido de radio de fuentes naturales y artificiales. Las bandas de onda corta tienen un alcance potencial mayor, pero están más sujetas a interferencias de estaciones distantes y condiciones atmosféricas variables que afectan la recepción. [53] [54]

En la banda de frecuencias muy altas , superior a 30 megahertz, la atmósfera terrestre tiene un efecto menor en el alcance de las señales y la propagación a través de la línea de visión se convierte en el modo principal. Estas frecuencias más altas permiten el gran ancho de banda necesario para la transmisión de televisión. Como las fuentes de ruido naturales y artificiales están menos presentes en estas frecuencias, es posible la transmisión de audio de alta calidad mediante modulación de frecuencia . [55] [56]

Audio: Transmisión de radio

La radiodifusión es la transmisión de audio (sonido) a receptores de radio pertenecientes a una audiencia pública. El audio analógico es la forma más antigua de transmisión de radio. La transmisión AM comenzó alrededor de 1920. La transmisión FM se introdujo a fines de la década de 1930 con una fidelidad mejorada . Un receptor de radio de transmisión se denomina radio . La mayoría de las radios pueden recibir tanto AM como FM. [57]

Radio "Roberts" para DAB
  • La radiodifusión de audio digital (DAB) debutó en algunos países en 1998. Transmite audio como una señal digital en lugar de una señal analógica como lo hacen AM y FM. [63] La DAB tiene el potencial de proporcionar un sonido de mayor calidad que la FM (aunque muchas estaciones no eligen transmitir con una calidad tan alta), tiene una mayor inmunidad al ruido y la interferencia de radio, hace un mejor uso del escaso ancho de banda del espectro radioeléctrico y proporciona funciones avanzadas para el usuario, como guías electrónicas de programas . Su desventaja es que es incompatible con las radios anteriores, por lo que se debe comprar un nuevo receptor DAB. [64] Varias naciones han establecido fechas para apagar las redes FM analógicas a favor de DAB / DAB+, en particular Noruega en 2017 [65] y Suiza en 2024. [66]
Una única estación DAB transmite una señal con un ancho de banda de 1.500 kHz que transporta entre 9 y 12 canales de audio digital modulados por OFDM entre los que el oyente puede elegir. Las emisoras pueden transmitir un canal a distintas velocidades de bits , por lo que los distintos canales pueden tener una calidad de audio diferente. En distintos países, las estaciones DAB transmiten en la banda III (174-240 MHz) o en la banda L (1,452-1,492 GHz) en el rango UHF, por lo que la recepción de FM está limitada por el horizonte visual a unas 40 millas (64 km). [67] [64]
  • Digital Radio Mondiale (DRM) es un estándar de radio terrestre digital desarrollado principalmente por radiodifusores como un reemplazo de mayor eficiencia espectral para la transmisión AM y FM heredada. Mondiale significa "mundial" en francés e italiano; DRM se desarrolló en 2001 y actualmente cuenta con el apoyo de 23 países y fue adoptado por algunos radiodifusores europeos y orientales a partir de 2003. El modo DRM30 utiliza las bandas de transmisión comercial por debajo de los 30 MHz y está destinado a reemplazar la transmisión AM estándar en las bandas de onda larga , onda media y onda corta . El modo DRM+ utiliza frecuencias VHF centradas alrededor de la banda de transmisión FM y está destinado a reemplazar la transmisión FM. Es incompatible con los receptores de radio existentes, por lo que requiere que los oyentes compren un nuevo receptor DRM. La modulación utilizada es una forma de OFDM llamada COFDM en la que se transmiten hasta 4 portadoras en un canal anteriormente ocupado por una sola señal AM o FM, modulada por modulación de amplitud en cuadratura (QAM). [72] [60]
El sistema DRM está diseñado para ser lo más compatible posible con los transmisores de radio AM y FM existentes, de modo que gran parte del equipo en las estaciones de radio existentes pueda seguir en uso, complementado con equipos de modulación DRM. [72] [60]
El receptor RNS-510 de Volkswagen es compatible con la radio satelital Sirius .

Vídeo: Transmisión televisiva

La radiodifusión televisiva es la transmisión de imágenes en movimiento por radio, que consisten en secuencias de imágenes fijas, que se muestran en una pantalla en un receptor de televisión (un "televisor" o TV) junto con un canal de audio (sonido) sincronizado. Las señales de televisión ( vídeo ) ocupan un ancho de banda mayor que las señales de radiodifusión ( audio ). La televisión analógica , la tecnología de televisión original, requería 6 MHz, por lo que las bandas de frecuencia de televisión se dividen en canales de 6 MHz, ahora llamados "canales de RF". [75]

El estándar de televisión actual, introducido a principios de 2006, es un formato digital llamado televisión de alta definición (HDTV), que transmite imágenes a una resolución más alta, típicamente 1080 píxeles de alto por 1920 píxeles de ancho, a una velocidad de 25 o 30 cuadros por segundo. Los sistemas de transmisión de televisión digital (DTV), que reemplazaron a la televisión analógica más antigua en una transición que comenzó en 2006, utilizan compresión de imágenes y modulación digital de alta eficiencia como OFDM y 8VSB para transmitir video HDTV dentro de un ancho de banda más pequeño que los antiguos canales analógicos, ahorrando espacio escaso en el espectro radioeléctrico . Por lo tanto, cada uno de los canales de RF analógicos de 6 MHz ahora transporta hasta 7 canales DTV; estos se denominan "canales virtuales". Los receptores de televisión digital tienen un comportamiento diferente en presencia de mala recepción o ruido que la televisión analógica, llamado efecto " acantilado digital ". A diferencia de la televisión analógica, en la que una recepción cada vez más pobre hace que la calidad de la imagen se degrade gradualmente, en la televisión digital la calidad de la imagen no se ve afectada por la mala recepción hasta que, en un momento determinado, el receptor deja de funcionar y la pantalla se vuelve negra. [76] [77]

(izquierda) Diagrama que muestra cómo funciona una red de televisión por satélite. (centro) El Super Dish 121 de DISH Network montado en un tejado. (derecha) Un bloque de pisos residencial con antenas parabólicas para televisión

Tiempo y frecuencia

Los servicios de señales horarias y frecuencias estándar del gobierno operan estaciones de radio horarias que transmiten continuamente señales horarias extremadamente precisas producidas por relojes atómicos , como referencia para sincronizar otros relojes. [84] Algunos ejemplos son BPC , DCF77 , JJY , MSF , RTZ , TDF , WWV y YVTO . [85] Un uso es en relojes de radio y relojes, que incluyen un receptor automático que periódicamente (generalmente semanalmente) recibe y decodifica la señal horaria y reinicia el reloj de cuarzo interno del reloj a la hora correcta, lo que permite que un reloj pequeño o de escritorio tenga la misma precisión que un reloj atómico. Las estaciones horarias gubernamentales están disminuyendo en número porque los satélites GPS y el Protocolo de Tiempo de Red de Internet (NTP) proporcionan estándares de tiempo igualmente precisos. [86]

Comunicación de voz bidireccional

Una radio bidireccional es un transceptor de audio , un receptor y transmisor en el mismo dispositivo, utilizado para la comunicación de voz bidireccional de persona a persona con otros usuarios con radios similares. Un término más antiguo para este modo de comunicación es radiotelefonía . El enlace de radio puede ser semidúplex , como en un walkie-talkie , utilizando un solo canal de radio en el que solo una radio puede transmitir a la vez, por lo que diferentes usuarios se turnan para hablar, presionando un botón " pulsar para hablar " en su radio que apaga el receptor y enciende el transmisor. O el enlace de radio puede ser dúplex completo , un enlace bidireccional que utiliza dos canales de radio para que ambas personas puedan hablar al mismo tiempo, como en un teléfono celular. [87]

(Izquierda) Antena de ondas milimétricas 5G, Alemania (derecha) Smartphones 5G polacos
Teléfonos satelitales, mostrando las grandes antenas necesarias para comunicarse con el satélite.
Motorola SCR-536 de la Segunda Guerra Mundial, el primer walkie-talkie
Bombero usando un walkie-talkie moderno
Radio marina VHF en un barco

Comunicación de voz unidireccional

La transmisión de radio unidireccional se denomina simplex .

Comunicación de datos

Una computadora portátil (con módulo Wi-Fi ) y un enrutador inalámbrico doméstico típico (a la derecha) que lo conecta a Internet. La computadora portátil muestra su propia foto
Enrutador WAN inalámbrico de barrio en poste telefónico
Antenas parabólicas de enlaces de retransmisión de microondas en torres en Australia
Etiqueta RFID de un DVD

Comunicación espacial

Centro de comunicaciones por satélite de Dubna (Rusia) [125]

Se trata de una comunicación por radio entre una nave espacial y una estación terrestre en la Tierra, u otra nave espacial. La comunicación con naves espaciales implica las distancias de transmisión más largas de todos los enlaces de radio, hasta miles de millones de kilómetros para naves espaciales interplanetarias . Para recibir las señales débiles de naves espaciales distantes, las estaciones terrestres satelitales utilizan grandes antenas parabólicas de "plato" de hasta 25 metros (82 pies) de diámetro y receptores extremadamente sensibles. Se utilizan altas frecuencias en la banda de microondas , ya que las microondas pasan a través de la ionosfera sin refracción , y en frecuencias de microondas las antenas de alta ganancia necesarias para enfocar la energía de radio en un haz estrecho apuntado al receptor son pequeñas y ocupan un mínimo de espacio en un satélite. Se asignan porciones de la banda UHF , L , C , S , k u y k a para la comunicación espacial. Un enlace de radio que transmite datos desde la superficie de la Tierra a una nave espacial se denomina enlace ascendente , mientras que un enlace que transmite datos desde la nave espacial a la tierra se denomina enlace descendente. [126]

Satélite de comunicaciones perteneciente a Azerbaiyán

Radar

Un controlador de tráfico aéreo militar en un portaaviones de la Marina de los EE. UU. monitorea las aeronaves en la pantalla del radar

El radar es un método de radiolocalización utilizado para localizar y rastrear aeronaves, naves espaciales, misiles, barcos, vehículos y también para mapear patrones climáticos y terrenos. Un conjunto de radar consta de un transmisor y un receptor. [130] [131] El transmisor emite un haz estrecho de ondas de radio que se desplaza por el espacio circundante. Cuando el haz incide en un objeto objetivo, las ondas de radio se reflejan de vuelta al receptor. La dirección del haz revela la ubicación del objeto. Dado que las ondas de radio viajan a una velocidad constante cercana a la velocidad de la luz , midiendo el breve retraso de tiempo entre el pulso saliente y el "eco" recibido, se puede calcular la distancia hasta el objetivo. Los objetivos a menudo se muestran gráficamente en una pantalla de mapa llamada pantalla de radar . El radar Doppler puede medir la velocidad de un objeto en movimiento, midiendo el cambio en la frecuencia de las ondas de radio de retorno debido al efecto Doppler . [132]

Los radares utilizan principalmente frecuencias altas en las bandas de microondas , porque estas frecuencias crean fuertes reflejos en objetos del tamaño de vehículos y pueden enfocarse en haces estrechos con antenas compactas. [131] Las antenas parabólicas (parabólicas) son ampliamente utilizadas. En la mayoría de los radares, la antena transmisora ​​también sirve como antena receptora; esto se llama radar monoestático . Un radar que utiliza antenas transmisoras y receptoras separadas se llama radar biestático . [133]

Antena de radar de vigilancia aeroportuaria ASR-8. Gira una vez cada 4,8 segundos. La antena rectangular de la parte superior es el radar secundario.
Antena de radar marino giratoria en un barco

Radiolocalización

La radiolocalización es un término genérico que abarca una variedad de técnicas que utilizan ondas de radio para encontrar la ubicación de objetos o para la navegación. [144]

Un iPhone antiguo con su aplicación de navegación GPS en uso.
Un asistente de navegación personal de Garmin , que utiliza el GPS para brindar indicaciones para llegar a un destino.
Radiobaliza de localización de emergencia EPIRB en un barco
Oficial de vida silvestre rastrea a un puma con radiotransmisor

Mando a distancia

El avión no tripulado MQ-1 Predator de la Fuerza Aérea de EE. UU. pilotado de forma remota por un piloto en tierra

El control remoto por radio es el uso de señales de control electrónico enviadas por ondas de radio desde un transmisor para controlar las acciones de un dispositivo en una ubicación remota. Los sistemas de control remoto también pueden incluir canales de telemetría en la otra dirección, utilizados para transmitir información en tiempo real sobre el estado del dispositivo a la estación de control. Las naves espaciales no tripuladas son un ejemplo de máquinas controladas a distancia, controladas por comandos transmitidos por estaciones terrestres satelitales . La mayoría de los controles remotos portátiles utilizados para controlar productos electrónicos de consumo como televisores o reproductores de DVD en realidad funcionan con luz infrarroja en lugar de ondas de radio, por lo que no son ejemplos de control remoto por radio. Un problema de seguridad con los sistemas de control remoto es la suplantación de identidad , en la que una persona no autorizada transmite una imitación de la señal de control para tomar el control del dispositivo. [158] Ejemplos de control remoto por radio:

Control remoto de entrada sin llave para un automóvil
Quadcopter , un popular juguete de control remoto

Interferencia

La interferencia de radio es la radiación deliberada de señales de radio diseñadas para interferir con la recepción de otras señales de radio. Los dispositivos de interferencia se denominan "supresores de señales" o "generadores de interferencias" o simplemente bloqueadores. [166]

En tiempos de guerra, los militares utilizan interferencias para interferir en las comunicaciones de radio tácticas de los enemigos. Dado que las ondas de radio pueden atravesar las fronteras nacionales, algunos países totalitarios que practican la censura utilizan interferencias para impedir que sus ciudadanos escuchen las emisiones de estaciones de radio de otros países. Las interferencias suelen realizarse mediante un transmisor potente que genera ruido en la misma frecuencia que el transmisor objetivo. [167] [168]

La ley federal de Estados Unidos prohíbe la operación o venta no militar de cualquier tipo de dispositivo de interferencia, incluidos los que interfieren con el GPS, la telefonía celular, el Wi-Fi y los radares policiales. [169]

Investigación científica

See also

References

  1. ^ "Radio". Oxford Living Dictionaries. Oxford University Press. 2019. Archived from the original on 24 March 2019. Retrieved 26 February 2019.
  2. ^ "Definition of radio". Encyclopedia. PCMagazine website, Ziff-Davis. 2018. Retrieved 26 February 2019.
  3. ^ a b c d Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 1–4. ISBN 978-1316785164.
  4. ^ a b c d "125 Years Discovery of Electromagnetic Waves". Karlsruhe Institute of Technology. 16 May 2022. Archived from the original on 14 July 2022. Retrieved 14 July 2022.
  5. ^ a b Bondyopadhyay, Prebir K. (1995) "Guglielmo Marconi – The father of long distance radio communication – An engineer's tribute", 25th European Microwave Conference: Volume 2, pp. 879–85
  6. ^ a b "1890s – 1930s: Radio". Elon University. Archived from the original on 8 June 2022. Retrieved 14 July 2022.
  7. ^ a b Belrose, John S. (5–7 September 1995). "Radio's First Message -- Fessenden and Marconi". Institute of Electrical and Electronics Engineers. Retrieved 6 November 2022.
  8. ^ a b "History of Commercial Radio". Federal Communications Commission. 23 October 2020. Archived from the original on 1 January 2022. Retrieved 14 July 2022.
  9. ^ "radio (n.)". Online Etymology Dictionary. Retrieved 13 July 2022.
  10. ^ Bell, Alexander Graham (July 1881). "Production of Sound by Radiant Energy". Popular Science Monthly. pp. 329–330. [W]e have named the apparatus for the production and reproduction of sound in this way the "photophone", because an ordinary beam of light contains the rays which are operative. To avoid in future any misunderstandings upon this point, we have decided to adopt the term "radiophone", proposed by M. Mercadier, as a general term signifying the production of sound by any form of radiant energy...
  11. ^ Manning, Trevor (2009). Microwave Radio Transmission Design Guide. Artech House. p. 2.
  12. ^ Maver, William Jr. (1903). American Telegraphy and Encyclopedia of the Telegraph: Systems, Apparatus, Operation. New York: Maver Publishing Co. p. 333. wireless telegraphy.
  13. ^ Steuart, William Mott; et al. (1906). Special Reports: Telephones and Telegraphs 1902. Washington D.C.: U.S. Bureau of the Census. pp. 118–119.
  14. ^ a b c d https://earlyradiohistory.us/sec022.htm Thomas H. White, United States Early Radio History, Section 22
  15. ^ Collins, A. Frederick (10 May 1902). "The Genesis of Wireless Telegraphy". Electrical World and Engineer. p. 811.
  16. ^ "Wireless Telegraphy". The Practical Engineer. 25 February 1898. p. 174. Dr. O. J. Lodge, who preceded Marconi in making experiments in what may be called "ray" telegraphy or radiotelegraphy by a year or two, has devised a new method of sending and receiving the messages. The reader will understand that in the radiotelegraph electric waves forming the signals of the message starting from the sending instrument and travel in all directions like rays of light from a lamp, only they are invisible.
  17. ^ "Wireless Telegraphy", The Electrical Review (London), 20 January 1905, page 108, quoting from the British Post Office's 30 December 1904 Post Office Circular.
  18. ^ "Interference with Wireless Messages", Electrical World, 22 June 1907, page 1270.
  19. ^ Sungook Hong (2001), Wireless: From Marconi's Black-box to the Audion, MIT Press, pp. 5–10
  20. ^ "The Nobel Prize in Physics 1909". NobelPrize.org. 2023. Archived from the original on 31 July 2023. Retrieved 31 July 2023.
  21. ^ Kraus, John D. (1988). Antennas (2nd ed.). Tata-McGraw Hill. p. 50. ISBN 0074632191.
  22. ^ Serway, Raymond; Faughn, Jerry; Vuille, Chris (2008). College Physics, 8th Ed. Cengage Learning. p. 714. ISBN 978-0495386933.
  23. ^ Balanis, Constantine A. (2005). Antenna theory: Analysis and Design, 3rd Ed. John Wiley and Sons. p. 10. ISBN 978-1118585733.
  24. ^ a b c d Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 16–17. ISBN 978-1316785164.
  25. ^ Visser, Hubregt J. (2012). Antenna Theory and Applications. John Wiley & Sons. ISBN 978-1119990253. Retrieved 29 August 2022.
  26. ^ Zainah Md Zain; Hamzah Ahmad; Dwi Pebrianti; Mahfuzah Mustafa; Nor Rul Hasma Abdullah; Rosdiyana Samad; Maziyah Mat Noh (2020). Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019: NUSYS'19. Springer Nature. p. 535. ISBN 978-9811552816. Extract of pp. 535–536
  27. ^ Hurley, Chris; Rogers, Russ; Thornton, Frank; Connelly, Daniel; Baker, Brian (2007). "Understanding Antennas and Antenna Theory". WarDriving and Wireless Penetration Testing. pp. 31–61. doi:10.1016/B978-159749111-2/50027-1. ISBN 978-1-59749-111-2.
  28. ^ Neely, Matthew; Hamerstone, Alex; Sanyk, Chris (2013). "Basic Radio Theory and Introduction to Radio Systems". Wireless Reconnaissance in Penetration Testing. pp. 7–43. doi:10.1016/B978-1-59-749731-2.00002-8. ISBN 978-1-59749-731-2.
  29. ^ "Electromagnetic Radiation". NASA. Archived from the original on 23 May 2016. Retrieved 18 August 2022.
  30. ^ de Podesta, M. (2002). Understanding the Properties of Matter. CRC Press. p. 131. ISBN 978-0-415-25788-6.
  31. ^ a b c Brain, Marshall (7 December 2000). "How Radio Works". HowStuffWorks.com. Retrieved 11 September 2009.
  32. ^ a b c d e f g h Faruque, Saleh (2016). Radio Frequency Modulation Made Easy. Springer Publishing. ISBN 978-3319412023. Retrieved 29 August 2022.
  33. ^ Ergen, Mustafa (2009). Mobile Broadband. doi:10.1007/978-0-387-68192-4. ISBN 978-0-387-68189-4.[page needed]
  34. ^ Tony Dorbuck (ed.), The Radio Amateur's Handbook, Fifty-Fifth Edition, American Radio Relay League, 1977, p. 368
  35. ^ John Avison, The World of Physics, Nelson · 2014, page 367
  36. ^ C-W and A-M Radio Transmitters and Receivers, United States. Department of the Army – 1952, pp. 167–168
  37. ^ a b c d "Spectrum 101" (PDF). US National Aeronautics and Space Administration (NASA). February 2016. Archived (PDF) from the original on 11 February 2017. Retrieved 2 December 2019., p. 6
  38. ^ a b c Pogorel, Girard; Chaduc, Jean-Marc (2010). The Radio Spectrum: Managing a Strategic Resource. Wiley). ISBN 978-0470393529. Retrieved 29 August 2022.
  39. ^ Norberg, Bob (27 November 2022). "Digital Radio Is Coming, But Analog Isn't Dead Yet". The Ledger. Archived from the original on 3 September 2022. Retrieved 3 September 2022.
  40. ^ "Analogue To Digital: Radio Slow To Tune Into Transition". Financial Express. 13 October 2005. Archived from the original on 3 September 2022. Retrieved 3 September 2022.
  41. ^ "Radio Regulations, 2016 Edition" (PDF). International Telecommunication Union. 3 November 2016. Retrieved 9 November 2019. Article 2, Section 1, p.27
  42. ^ a b Nomenclature of the frequency and wavelength bands used in telecommunications (PDF) (Report). Geneva: International Telecommunications Union. 2015. ITU-R V.431-8. Retrieved 6 April 2023.
  43. ^ Communications-electronics Management of the Electromagnetic Spectrum (Report). Headquarters, Department of the Army. United States Department of the Army. 1973. p. 2.
  44. ^ Duncan, Christopher; Gkountouna, Olga; Mahabir, Ron (2021). "Theoretical Applications of Magnetic Fields at Tremendously Low Frequency in Remote Sensing and Electronic Activity Classification". In Arabnia, Hamid R.; Deligiannidis, Leonidas; Shouno, Hayaru; Tinetti, Fernando G.; Tran, Quoc-Nam (eds.). Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Cham: Springer International Publishing. pp. 235–247. doi:10.1007/978-3-030-71051-4_18. ISBN 978-3030710507. S2CID 238934419.
  45. ^ "Radio Frequency Interference Best Practices Guidebook - CISA - Feb. 2020" (PDF). Cybersecurity and Infrastructure Security Agency SAFECOM/National Council of Statewide Interoperability Coordinators. USDepartment of Homeland Security. Retrieved 29 August 2022.
  46. ^ Mazar (Madjar), Haim (2016). Radio Spectrum Management: Policies, Regulations and Techniques. Wiley. ISBN 978-1118511794. Retrieved 29 August 2022.
  47. ^ "ARTICLE 19 Identification of stations" (PDF). International Telecommunication Union. Retrieved 29 August 2022.
  48. ^ "Commercial Radio Operator Types of Licenses". Federal Communications Commission. 6 May 2016. Retrieved 29 August 2022.
  49. ^ Dichoso, Joe (October 9, 2007). "FCC Basics of Unlicensed Transmitters" (PDF). Federal Communications Commission. Retrieved 29 August 2022.
  50. ^ Pizzi, Skip; Jones, Graham (2014). A Broadcast Engineering Tutorial for Non-Engineers, 4th Ed. National Association of Broadcasters, Taylor and Francis. ISBN 978-0415733397.
  51. ^ Witten, Alan Joel (2017). Handbook of Geophysics and Archaeology. Routledge. ISBN 978-1351564588. Retrieved 30 August 2022.
  52. ^ Bonsor, Kevin (26 September 2001). "How Satellite Radio Works". howstuffworks.com. HowStuffWorks. Retrieved 30 August 2022.
  53. ^ Gosling, William (1998). Radio Antennas and Propagation: Radio Engineering Fundamentals. Newnes. ISBN 978-0750637411. Retrieved 30 August 2022.
  54. ^ Griffin, B. Whitfield (2000). Radio-electronic Transmission Fundamentals. SciTech Publishing/Noble. ISBN 978-1884932137. Retrieved 30 August 2022.
  55. ^ Pizzi, Skip; Jones, Graham (2014). A Broadcast Engineering Tutorial for Non-Engineers. CRC Press/Focal Press. ISBN 978-1317906834. Retrieved 30 August 2022.
  56. ^ Perez, Reinaldo (2013). Handbook of Electromagnetic Compatibility. Academic Press. ISBN 978-1483288970. Retrieved 30 August 2022.
  57. ^ Green, Clarence R.; Bourque, Robert M. (1980). The Theory and Servicing of AM, FM, and FM Stereo Receivers. Prentice-Hall. p. 6.
  58. ^ "Appendix C: Glossary" (PDF). Radio – Preparing for the Future (Report). London: Ofcom. October 2005. p. 2.
  59. ^ a b Gupta, Rakesh (2021). Education Technology in Physical Education and Sports. Audio Visual Media in Physical Education. India: Friends Publications. ISBN 978-9390649808. Retrieved 30 August 2022.
  60. ^ a b c Berg, Jerome S. (2008). Broadcasting on the Short Waves: 1945 to today. McFarland. ISBN 978-0786451982. Retrieved 30 August 2022.
  61. ^ Sterling, Christopher H.; Kieth, Michael C. (2009). Sounds of Change: A history of FM broadcasting in America. University of North Carolina Press. ISBN 978-0807877555. Retrieved 30 August 2022.
  62. ^ Digital Radio Guide (PDF) (Report). Switzerland: World Broadcasting Unions. 2017.
  63. ^ Baker, William (2020). "DAB vs. FM: The differences between analog and digital radio". Radio Fidelity online magazine. Retrieved 14 September 2020.
  64. ^ a b Hoeg, Wolfgang; Lauterbach, Thomas (2004). Digital Audio Broadcasting: Principles and applications of digital radio. John Wiley & Sons. ISBN 978-0470871423. Retrieved 30 August 2022.
  65. ^ Revel, Timothy (10 January 2017). "Norway is first country to turn off FM radio and go digital-only". New Scientist. Retrieved 4 September 2022.
  66. ^ McLane, Paul (30 August 2021). "Swiss FM shutdown reverts to original 2024 date". Radio World. Retrieved 4 September 2022.
  67. ^ Trends in Radio Research: Diversity, innovation, and policies. Cambridge Scholars Publishing. 2018. p. 263.
  68. ^ Bortzfield, Bill (27 November 2017). The state of HD Radio in Jacksonville and nationwide. WJCT Public Media (Report). Retrieved 4 September 2022.
  69. ^ Hadfield, Marty (15 August 2016). Transmitter & programming considerations for HD Radio. RBR + TVBR (rbr.com) (Report). Retrieved 4 September 2022.
  70. ^ "Receiving NRSC‑5". theori.io. 9 June 2017. Archived from the original on 20 August 2017. Retrieved 14 April 2018.
  71. ^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2013). NAB Engineering Handbook. National Association of Broadcasters / Taylor & Francis. pp. 558–559. ISBN 978-1136034107.
  72. ^ a b DRM System Specification (PDF) (vers. 4.2.1). Geneva, CH: European Broadcasting Union. January 2021. p. 178. ETSI ES 201 980. Retrieved 19 April 2018 – via ETSI.org.
  73. ^ Satellite S‑band radio frequency table (Report). 15 August 2011. Retrieved 23 April 2013 – via CSG Network.
  74. ^ Bonsor, Kevin (26 September 2001). "How satellite radio works". HowStuffWorks. Retrieved 1 May 2013.
  75. ^ Enticknap, Leo Douglas Graham (2005). Moving Image Technology: From Zoetrope to Digital. Wallflower Press (Columbia University Press). ISBN 978-1904764069. Retrieved 31 August 2022.
  76. ^ Starks, M. (2013). The Digital Television Revolution: Origins to Outcomes. Springer. ISBN 978-1137273345. Retrieved 31 August 2022.
  77. ^ Brice, Richard (2002). Newnes Guide to Digital TV. Newnes. ISBN 978-0750657211. Retrieved 31 August 2022.
  78. ^ Bartlet, George W., Ed. (1975). NAB Engineering Handbook, 6th Ed. Washington, D.C.: National Association of Broadcasters. p. 21.{{cite book}}: CS1 maint: multiple names: authors list (link)
  79. ^ Lundstrom, Lars-Ingemar (2012). Understanding Digital Television: An Introduction to DVB Systems with Satellite, Cable, Broadband and Terrestrial TV Distribution. CRC Press. ISBN 978-1136032820.
  80. ^ a b Ingram, Dave (1983). Video Electronics Technology. TAB Books. ISBN 978-0830614745. Retrieved 1 September 2022.
  81. ^ Federal Communications Commission (Parts 20 - 39). ProStar Publications. ISBN 9781577858461.
  82. ^ Benoit, Herve (1999). Satellite Television: Analogue and Digital Reception Techniques. Butterworth-Heinemann/Arnold. ISBN 978-0340741085. Retrieved 1 September 2022.
  83. ^ Long, Mark (1999). The Digital Satellite TV Handbook. Newnes. ISBN 978-0750671712. Retrieved 1 September 2022.
  84. ^ Weik, Martin H. (2000). "standard frequency and time signal". Computer Science and Communications Dictionary. Computer Science and Communications Dictionary. Springer. p. 1649. doi:10.1007/1-4020-0613-6_18062. ISBN 978-0792384250. Retrieved 1 September 2022.
  85. ^ Radio Aids to Navigation, Publication 117, Chapter 2, Radio Time Signals. Lighthouse Press. 2005. ISBN 978-1577855361. Retrieved 1 September 2022.
  86. ^ "What Closing A Government Radio Station Would Mean For Your Clocks". National Public Radio, Weekend Edition. Retrieved 1 September 2022.
  87. ^ Frenzel, Louis (2017). Electronics Explained: Fundamentals for Engineers, Technicians, and Makers. Newnes. ISBN 978-0128118795. Retrieved 2 September 2022.
  88. ^ a b Brain, Marshall; Tyson, Jeff; Layton, Julia (2018). "How Cell Phones Work". How Stuff Works. InfoSpace Holdings LLC. Retrieved 31 December 2018.
  89. ^ Lawson, Stephen. "Ten Ways Your Smartphone Knows Where You Are". PCWorld. Retrieved 2 September 2022.
  90. ^ Guowang Miao; Jens Zander; Ki Won Sung; Ben Slimane (2016). Fundamentals of Mobile Data Networks. Cambridge University Press. ISBN 978-1107143210.
  91. ^ "Cellular Telephone Basics". Privateline.com. 1 January 2006. p. 2. Archived from the original on 17 April 2012. Retrieved 2 September 2022.
  92. ^ Brown, Sara. "5G, explained". mitsloan.mit.edu. MIT Sloan School of Management. Retrieved 2 September 2022.
  93. ^ Osseiran, Afif; Monserrat, Jose F.; Marsch, Patrick (2016). 5G Mobile and Wireless Communications Technology. Cambridge University Press. ISBN 978-1107130098. Retrieved 2 September 2022.
  94. ^ Chandler, Nathan (13 February 2013). "How Satellite Phones Work". howstuffworks.com. HowStuffWorks. Retrieved 2 September 2022.
  95. ^ "Satellite Phone : Functioning/Working Of Satellite Phone". tutorialsweb.com. Tutorials Web. Retrieved 2 September 2022.
  96. ^ McComb, Gordon (October 1982). "Never Miss a Call: PS Buyer's Guide to Cordless Phones". Popular Science. pp. 84–85 – via Google Books.
  97. ^ Guy, Nick (13 July 2022). "Wirecutter: The Best Cordless Phone". The New York Times. ISSN 0362-4331. Retrieved 7 September 2022.
  98. ^ U.S. Fire Administration (June 2016). Voice Radio Communications Guide for the Fire Service (PDF) (Report). Washington, D.C.: Federal Emergency Management Agency. pp. 33–34. Retrieved 7 September 2022.
  99. ^ Sterling, Christopher H. (2008). Military Communications: From Ancient Times to the 21st Century. ABC-CLIO. pp. 503–504. ISBN 978-1851097326.
  100. ^ Aeronautical Frequency Committee Manual (PDF) (Report). Aviation Spectrum Resources Inc. 2012.
  101. ^ "Aviation Radio Bands and Frequencies". Smeter network 2011. Archived from the original on 12 February 2004. Retrieved 16 February 2011.
  102. ^ North Atlantic Operations and Airspace Manual (PDF) (Report). ICAO European and North Atlantic Office. 28 March 2019.
  103. ^ Van Horn, Larry. "The Military VHF/UHF Spectrum". Monitoring Times.
  104. ^ Fletcher, Sue (2002). A Boater's Guide to VHF and GMDSS. Camden, Maine: International Marine/McGraw-Hill. ISBN 0071388028. OCLC 48674566.
  105. ^ The ARRL Handbook for Radio Communications 2017 (94th ed.). Newington, Connecticut: American Radio Relay League. 2016. ISBN 978-1625950628. OCLC 961215964.
  106. ^ Brain, Marshall (11 February 2021). "Radio basics: Real life examples". How radio works. How Stuff Works website. Retrieved 27 August 2022.
  107. ^ Radiofrequency Toolkit for Environmental Health Practitioners (PDF) (Report). Vancouver, British Columbia, Canada: British Columbia Centre for Disease Control/National Collaborating Centre for Environmental Health. p. 26. ISBN 978-1926933481.
  108. ^ "Best Baby Monitor Buying Guide". Consumer Reports. 24 April 2016. Retrieved 9 September 2022.
  109. ^ Eargle, John (2005). "Overview of Wireless Microphone Technology". The Microphone Book (2nd ed.). Oxford: Focal Press. pp. 142–151. ISBN 978-1136118067 – via Google Books.
  110. ^ Bell, Dee Ana (1 November 2012). "Avoiding Audio Problems with Wireless Microphone Systems". TV Technology. Retrieved 10 September 2022.
  111. ^ Vernon, Tom (28 August 2021). "Wireless Mic Industry Debates WMAS Technology". Radio World. Retrieved 10 September 2022.
  112. ^ Lewis, Barry D.; Davis, Peter T. (2004). Wireless Networks For Dummies. John Wiley & Sons. ISBN 978-0764579776. Retrieved 12 September 2022.
  113. ^ a b Lowe, Doug (2020). Networking For Dummies. John Wiley & Sons. ISBN 978-1119748670. Retrieved 12 September 2022.
  114. ^ Muller, Nathan J. (2002). Networking A to Z. McGraw-Hill Professional. pp. 45–47. ISBN 978-0071429139. Archived from the original on 24 June 2021. Retrieved 12 September 2022.
  115. ^ Silver, H. Ward (2008). The ARRL Extra Class License Manual for Ham Radio. American Radio Relay League. ISBN 978-0872591356. Retrieved 12 September 2022.
  116. ^ Hillebrand, Friedhelm (2010). Short Message Service (SMS): The Creation of Personal Global Text Messaging. John Wiley & Sons. ISBN 978-0470689936. Retrieved 12 September 2022.
  117. ^ McGregor, Michael A.; Driscoll, Paul D.; Mcdowell, Walter (2016). Head's Broadcasting in America: A Survey of Electronic Media. Routledge. ISBN 978-1317347927. Retrieved 12 September 2022.
  118. ^ Radio-Electronics-Television Manufacturers Association. Engineering Department (1955). "Microwave Relay Systems for Communications". Electronic Industries Association. Retrieved 12 September 2022.
  119. ^ Bailey, David (2003). Practical Radio Engineering and Telemetry for Industry. Elsevier. ISBN 978-0080473895. Retrieved 12 September 2022.
  120. ^ Arafath, Yeasin; Mazumder, Debabrata; Hassan, Rakib (2012). Automatic Meter Reading by Radio Frequency Technology. Lap Lambert Academic Publishing GmbH KG. ISBN 978-3847372219. Retrieved 12 September 2022.
  121. ^ Bonsor, Kevin (28 August 2001). "How E-ZPass Works". howstuffworks.com. HowStuff Works. Retrieved 12 September 2022.
  122. ^ Hunt, V. Daniel; Puglia, Albert; Puglia, Mike (2007). RFID: A Guide to Radio Frequency Identification. John Wiley & Sons. ISBN 978-0470112243. Retrieved 12 September 2022.
  123. ^ White, Ryan (17 December 2021). "How do submarines communicate with the outside world?". navalpost.com. Naval Post. Retrieved 12 September 2022.
  124. ^ "Naval Research Reviews, Vol. 27". Superintendent of Government Documents. 1974. Retrieved 12 September 2022.
  125. ^ "Ground infrastructure". Russian Satellite Communications Company.
  126. ^ "State-of-the-Art of Small Spacecraft Technology, 9.0 - Communications". nasa.gov. National Aeronautics and Space Administration. 16 October 2021. Retrieved 11 September 2022.
  127. ^ "UCS Satellite Database". Union of Concerned Scientists. 1 January 2021. Retrieved 21 May 2021.
  128. ^ Marsten, Richard B. (2014). Communication Satellite Systems Technology. Academic Press. ISBN 978-1483276816. Retrieved 11 September 2022.
  129. ^ "Satellite TV-Direct Broadcast Satellite System, DBS TV". rfwireless-world.com. RF Wireless World. Retrieved 11 September 2022.
  130. ^ Brain, Marshall (2020). "How radar works". How Stuff Works. Retrieved 3 September 2022.
  131. ^ a b Skolnik, Merrill (2021). "Radar". Encyclopædia Britannica online. Encyclopædia Britannica Inc. Retrieved 3 September 2022.
  132. ^ "JetStream". www.noaa.gov.
  133. ^ Chernyak, Victor S. (1998). Fundamentals of multisite radar systems: multistatic radars and multiradar systems. CRC Press. pp. 3, 149. ISBN 9056991655.
  134. ^ "Airport Surveillance Radar". Air traffic control, technology. US Federal Aviation Administration website. 2020. Retrieved 3 September 2022.
  135. ^ Binns, Chris (2018). Aircraft Systems: Instruments, Communications, Navigation, and Control. Wiley. ISBN 978-1119259541. Retrieved 11 September 2022.
  136. ^ International Electronic Countermeasures Handbook. Artech/Horizon House. 2004. ISBN 978-1580538985. Retrieved 11 September 2022.
  137. ^ Bhattacharjee, Shilavadra (2021). "Marine Radars and Their Use in the Shipping Industry". Marine Insight website. Retrieved 3 September 2022.
  138. ^ "Using and Understanding Doppler Radar". US National Weather Service website. US National Weather Service, NOAA. 2020. Retrieved 3 September 2022.
  139. ^ Fenn, Alan J. (2007). Adaptive Antennas and Phased Arrays for Radar and Communications. Artech House. ISBN 978-1596932739. Retrieved 11 September 2022.
  140. ^ Teeuw, R.M. (2007). Mapping Hazardous Terrain Using Remote Sensing. Geological Society of London. ISBN 978-1862392298. Retrieved 11 September 2022.
  141. ^ Jol, Harry M. (2008). Ground Penetrating Radar Theory and Applications. Elsevier. ISBN 978-0080951843. Retrieved 10 September 2022.
  142. ^ Grosch, Theodore O. (30 June 1995). Verly, Jacques G. (ed.). "Radar sensors for automotive collision warning and avoidance". Synthetic Vision for Vehicle Guidance and Control. 2463. Society of Photo-Optical Instrumentation Engineers: 239–247. Bibcode:1995SPIE.2463..239G. doi:10.1117/12.212749. S2CID 110665898. Retrieved 10 September 2022.
  143. ^ Brodie, Bernard; Brodie, Fawn McKay (1973). From Crossbow to H-bomb. Indiana University Press. ISBN 0253201616. Retrieved 10 September 2022.
  144. ^ Sharp, Ian; Yu, Kegen (2018). Wireless Positioning: Principles and Practice, Navigation: Science and Technology. Springer. ISBN 978-9811087912. Retrieved 10 September 2022.
  145. ^ Teunissen, Peter; Montenbruck, Oliver (2017). Springer Handbook of Global Navigation Satellite Systems. Springer. ISBN 978-3319429281. Retrieved 10 September 2022.
  146. ^ El-Rabbany, Ahmed (2002). Introduction to GPS: The Global Positioning System. Artech House. ISBN 978-1580531832. Retrieved 10 September 2022.
  147. ^ Kiland, Taylor Baldwin; Silverstein Gray, Judy (15 July 2016). The Military GPS: Cutting Edge Global Positioning System. Enslow Publishing. ISBN 978-0766075184. Retrieved 10 September 2022.
  148. ^ Deltour, B.V. (August 1960). "A Guide To Nav-Com Equipment". Flying Magazine Aug 1960. Retrieved 10 September 2022.
  149. ^ "2008 Federal Radionavigation Plan". U.S. Department of Defense. 2009. Retrieved 10 September 2022.
  150. ^ Martin, Swayne. "How A VOR Works". boldmethod.com. Boldmethod -Digital Aviation Content. Retrieved 10 September 2022.
  151. ^ "Non-Directional Beacon (NDB)". systemsinterface.com. Systems Interface. Retrieved 10 September 2022.
  152. ^ "How does an emergency beacon work?". cbc.ca. CBC News. Retrieved 10 September 2022.
  153. ^ "What is a Cospas-Sarsat Beacon?". cospas-sarsat.int. International Cospas-Sarsat Programme. Retrieved 10 September 2022.
  154. ^ "Scientific and Technical Aerospace Reports, Volume 23, Issue 20". NASA, Office of Scientific and Technical Information. 1985. Retrieved 10 September 2022.
  155. ^ "An Introduction to Radio Direction Finding". defenceweb.co.za. defenceWeb. 8 January 2021. Retrieved 10 September 2022.
  156. ^ Moell, Joseph D.; Curlee, Thomas N. (1987). Transmitter Hunting: Radio Direction Finding Simplified. McGraw Hill Professional. ISBN 978-0830627011. Retrieved 10 September 2022.
  157. ^ "Radio telemetry". Migratory Connectivity Project, Smithsonian Migratory Bird Center. Retrieved 10 September 2022.
  158. ^ Layton, Julia (10 November 2005). "How Remote Controls Work". HowStuff Works. Retrieved 10 September 2022.
  159. ^ Sadraey, Mohammad H. (2020). Design of Unmanned Aerial Systems. Wiley. ISBN 978-1119508694. Retrieved 10 September 2022.
  160. ^ Smith, Craig (2016). The Car Hacker's Handbook: A Guide for the Penetration Tester. No Starch Press. ISBN 978-1593277703. Retrieved 10 September 2022.
  161. ^ Pinkerton, Alasdair (15 June 2019). Radio: Making Waves in Sound. Reaktion Books. ISBN 978-1789140996. Retrieved 9 September 2022.
  162. ^ Biffl, Stefan; Eckhart, Matthias; Lüder, Arndt; Weippl, Edgar (2019). Security and Quality in Cyber-Physical Systems Engineering. Springer Nature. ISBN 978-3030253127. Retrieved 9 September 2022.
  163. ^ Boukerche, Azzedine (2008). Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks. Wiley. ISBN 978-0470396377. Retrieved 9 September 2022.
  164. ^ Wonning, Paul R. (12 May 2021). "A Guide to the Home Electric System". Mossy Feet Books. Retrieved 9 September 2022.
  165. ^ Chatterjee, Jyotir Moy; Kumar, Abhishek; Jain, Vishal; Rathore, Pramod Singh (2021). Internet of Things and Machine Learning in Agriculture: Technological Impacts and Challenges. Walter de Gruyter GmbH & Co KG. ISBN 978-3110691283. Retrieved 9 September 2022.
  166. ^ "What jamming of a wireless security system is and how to resist it | Ajax Systems Blog". Ajax Systems. April 2019. Retrieved 18 January 2020.
  167. ^ "Remedial Electronic Counter-Countermeasures Techniques". FM 24-33 — Communications Techniques: Electronic Counter-Countermeasures (Report). Department of the Army. July 1990.
  168. ^ Varis, Tapio (1970). "The Control of Information by Jamming Radio Broadcasts". Cooperation and Conflict. 5 (3): 168–184. doi:10.1177/001083677000500303. ISSN 0010-8367. JSTOR 45083158. S2CID 145418504.
  169. ^ "Jammer Enforcement". Federal Communications Commission. 3 March 2011. Retrieved 18 January 2020.
  170. ^ Yeap, Kim Ho; Hirasawa, Kazuhiro (2020). Analyzing the Physics of Radio Telescopes and Radio Astronomy. IG Global. ISBN 978-1799823834. Retrieved 9 September 2022.
  171. ^ Joardar, Shubhendu; Claycomb, J. R. (2015). Radio Astronomy: An Introduction. Mercury Learning and Information. ISBN 978-1937585624.
  172. ^ Chapman, Rick; Gasparovic, Richard (2022). Remote Sensing Physics: An Introduction to Observing Earth from Space. Wiley. ISBN 978-1119669074. Retrieved 9 September 2022.
  173. ^ Pampaloni, Paulo; Paloscia, S. (2000). Microwave Radiometry and Remote Sensing of the Earth's Surface and Atmosphere. ISBN 9067643181. Retrieved 9 September 2022.

General references

External links