stringtranslate.com

Método de elementos finitos en mecánica estructural

El método de elementos finitos (MEF) es una técnica poderosa desarrollada originalmente para la solución numérica de problemas complejos en mecánica estructural y sigue siendo el método de elección para sistemas complejos. En el MEF, el sistema estructural se modela mediante un conjunto de elementos finitos apropiados interconectados en puntos discretos llamados nodos. Los elementos pueden tener propiedades físicas como espesor, coeficiente de expansión térmica , densidad , módulo de Young , módulo de corte y coeficiente de Poisson .

Historia

El origen del método finito se puede rastrear hasta el análisis matricial de estructuras [1] [2] donde se introdujo el concepto de un enfoque de matriz de desplazamiento o rigidez. Los conceptos de elementos finitos se desarrollaron con base en métodos de ingeniería en la década de 1950. El método de elementos finitos obtuvo su verdadero impulso en las décadas de 1960 y 1970 por John Argyris y colaboradores; en la Universidad de Stuttgart , por Ray W. Clough ; en la Universidad de California, Berkeley , por Olgierd Zienkiewicz y colaboradores Ernest Hinton , Bruce Irons ; [3] en la Universidad de Swansea , por Philippe G. Ciarlet ; en la Universidad de París ; en la Universidad de Cornell , por Richard Gallagher y colaboradores. Los trabajos originales como los de Argyris [4] y Clough [5] se convirtieron en la base de los métodos de análisis estructural de elementos finitos actuales.

Elementos unidimensionales rectos o curvos con propiedades físicas como rigidez axial, flexión y torsión. Este tipo de elemento es adecuado para modelar cables, tirantes, cerchas, vigas, refuerzos, rejillas y marcos. Los elementos rectos suelen tener dos nodos, uno en cada extremo, mientras que los elementos curvos necesitarán al menos tres nodos, incluidos los nodos de los extremos. Los elementos se colocan en el eje centroidal de los elementos reales.

Interconexión y desplazamiento de elementos

Los elementos están interconectados solo en los nodos exteriores y, en conjunto, deben cubrir todo el dominio con la mayor precisión posible. Los nodos tendrán desplazamientos nodales (vectoriales) o grados de libertad que pueden incluir traslaciones, rotaciones y, para aplicaciones especiales, derivadas de desplazamientos de orden superior. Cuando los nodos se desplazan, arrastrarán los elementos de una determinada manera dictada por la formulación del elemento. En otras palabras, los desplazamientos de cualquier punto del elemento se interpolarán a partir de los desplazamientos nodales y esta es la razón principal de la naturaleza aproximada de la solución.

Consideraciones prácticas

Desde el punto de vista de la aplicación, es importante modelar el sistema de tal manera que:

Los paquetes de software comerciales a gran escala a menudo proporcionan facilidades para generar la malla y la visualización gráfica de la entrada y la salida, lo que facilita enormemente la verificación de los datos de entrada y la interpretación de los resultados.

Panorama teórico de la formulación de desplazamiento FEM: de los elementos al sistema y a la solución

Si bien la teoría del método de elementos finitos se puede presentar desde diferentes perspectivas o énfasis, su desarrollo para el análisis estructural sigue el enfoque más tradicional a través del principio del trabajo virtual o el principio de energía potencial total mínima . El enfoque del principio del trabajo virtual es más general, ya que es aplicable tanto a comportamientos de materiales lineales como no lineales. El método del trabajo virtual es una expresión de la conservación de la energía : para sistemas conservativos, el trabajo añadido al sistema por un conjunto de fuerzas aplicadas es igual a la energía almacenada en el sistema en forma de energía de deformación de los componentes de la estructura.

El principio de desplazamientos virtuales del sistema estructural expresa la identidad matemática del trabajo virtual externo e interno:

En otras palabras, la suma del trabajo realizado sobre el sistema por el conjunto de fuerzas externas es igual al trabajo almacenado como energía de deformación en los elementos que componen el sistema.

El trabajo interno virtual en el lado derecho de la ecuación anterior se puede hallar sumando el trabajo virtual realizado sobre los elementos individuales. Esto último requiere que se utilicen funciones fuerza-desplazamiento que describan la respuesta para cada elemento individual. Por lo tanto, el desplazamiento de la estructura se describe mediante la respuesta de los elementos individuales (discretos) colectivamente. Las ecuaciones están escritas sólo para el pequeño dominio de elementos individuales de la estructura en lugar de una única ecuación que describa la respuesta del sistema como un todo (un continuo). Esto último daría lugar a un problema insoluble, de ahí la utilidad del método de elementos finitos. Como se muestra en las secciones siguientes, la ecuación ( 1 ) conduce a la siguiente ecuación de equilibrio gobernante para el sistema:

dónde

= vector de fuerzas nodales, que representa fuerzas externas aplicadas a los nodos del sistema.
= matriz de rigidez del sistema, que es el efecto colectivo de las matrices de rigidez de los elementos individuales  : .
= vector de desplazamientos nodales del sistema.
= vector de fuerzas nodales equivalentes, que representa todos los efectos externos distintos de las fuerzas nodales que ya están incluidas en el vector de fuerza nodal precedente R . Estos efectos externos pueden incluir fuerzas superficiales distribuidas o concentradas, fuerzas corporales, efectos térmicos, tensiones y deformaciones iniciales.

Una vez tomadas en cuenta las restricciones de los apoyos, los desplazamientos nodales se encuentran resolviendo el sistema de ecuaciones lineales ( 2 ), simbólicamente:

Posteriormente, las tensiones y deformaciones en elementos individuales se pueden encontrar de la siguiente manera:

dónde

= vector de desplazamientos nodales: un subconjunto del vector de desplazamiento del sistema r que pertenece a los elementos bajo consideración.
= matriz de deformación-desplazamiento que transforma los desplazamientos nodales q en deformaciones en cualquier punto del elemento.
= matriz de elasticidad que transforma las deformaciones efectivas en tensiones en cualquier punto del elemento.
= vector de deformaciones iniciales en los elementos.
= vector de tensiones iniciales en los elementos.

Aplicando la ecuación de trabajo virtual ( 1 ) al sistema, podemos establecer las matrices de elementos , así como la técnica de ensamblaje de las matrices del sistema y . Otras matrices como , , y son valores conocidos y se pueden configurar directamente a partir de la entrada de datos.

Funciones de interpolación o de forma

Sea el vector de desplazamientos nodales de un elemento típico. Los desplazamientos en cualquier otro punto del elemento pueden hallarse mediante el uso de funciones de interpolación como, simbólicamente:

dónde

= vector de desplazamientos en cualquier punto {x,y,z} del elemento.
= matriz de funciones de forma que sirven como funciones de interpolación .

La ecuación ( 6 ) da lugar a otras magnitudes de gran interés:

Trabajo virtual interno en un elemento típico

Para un elemento típico de volumen , el trabajo virtual interno debido a los desplazamientos virtuales se obtiene sustituyendo ( 5 ) y ( 9 ) en ( 1 ):

Matrices de elementos

Principalmente para facilitar la referencia, ahora se pueden definir las siguientes matrices pertenecientes a elementos típicos:

Matriz de rigidez de elementos
Vector de carga de elemento equivalente

Estas matrices se suelen evaluar numéricamente mediante la cuadratura gaussiana para la integración numérica . Su uso simplifica ( 10 ) a lo siguiente:

Trabajo virtual de los elementos en función de los desplazamientos nodales del sistema

Dado que el vector de desplazamiento nodal q es un subconjunto de los desplazamientos nodales del sistema r (para compatibilidad con elementos adyacentes), podemos reemplazar q con r expandiendo el tamaño de las matrices de elementos con nuevas columnas y filas de ceros:

donde, para simplificar, utilizamos los mismos símbolos para las matrices de elementos, que ahora tienen un tamaño ampliado y filas y columnas reorganizadas adecuadamente.

Sistema de trabajo virtual

Sumando el trabajo virtual interno ( 14 ) para todos los elementos se obtiene el lado derecho de ( 1 ):

Considerando ahora el lado izquierdo de ( 1 ), el trabajo virtual externo del sistema consiste en:

Ensamblaje de matrices de sistemas

Sumando ( 16 ), ( 17b ) e igualando la suma a ( 15 ) se obtiene:

Como los desplazamientos virtuales son arbitrarios, la igualdad anterior se reduce a:

La comparación con ( 2 ) muestra que:

En la práctica, las matrices de elementos no se expanden ni se reorganizan. En cambio, la matriz de rigidez del sistema se ensambla agregando coeficientes individuales a donde los subíndices ij, kl significan que los desplazamientos nodales del elemento coinciden respectivamente con los desplazamientos nodales del sistema . De manera similar, se ensambla agregando coeficientes individuales a donde coincide . Esta adición directa de en le da al procedimiento el nombre de Método de rigidez directa .

Véase también

Referencias

  1. ^ Análisis matricial de estructuras arqueadas, 3.ª edición, de Jr. William Weaver, James M. Gere, Springer-Verlag New York, LLC, ISBN  978-0-412-07861-3 , 1966
  2. ^ Teoría del análisis estructural matricial, JS Przemieniecki, McGraw-Hill Book Company, Nueva York, 1968
  3. ^ Hinton, Ernest; Irons, Bruce (julio de 1968). "Suavizado de datos experimentales mediante mínimos cuadrados utilizando elementos finitos". Strain . 4 (3): 24–27. doi :10.1111/j.1475-1305.1968.tb01368.x.
  4. ^ Argyris, JH y Kelsey, S. Teoremas de energía y análisis estructural, Butterworth Scientific publications, Londres, 1954
  5. ^ Clough, RW, “El elemento finito en el análisis de tensiones planas”. Actas de la 2.ª Conferencia de la ASCE sobre cálculos electrónicos, Pittsburgh, septiembre de 1960