stringtranslate.com

Lema de estimación

En matemáticas, el lema de estimación , también conocido como desigualdad ML , proporciona un límite superior para una integral de contorno . Si f es una función continua de valor complejo en el contorno Γ y si su valor absoluto | f  ( z ) | está acotado por una constante M para todo z en Γ , entonces

donde l (Γ) es la longitud de arco de Γ . En particular, podemos tomar el máximo

como límite superior. Intuitivamente, el lema es muy sencillo de entender. Si se piensa en un contorno como muchos segmentos de contorno más pequeños conectados entre sí, entonces habrá un máximo | f  ( z ) | para cada segmento. De todos los máximos | f  ( z ) | para los segmentos, habrá uno más grande en general. Por lo tanto, si el mayor | f  ( z ) | general se suma sobre todo el camino, entonces la integral de f  ( z ) sobre el camino debe ser menor o igual que él.

Formalmente, se puede demostrar que la desigualdad se cumple utilizando la definición de integral de contorno, la desigualdad de valor absoluto para integrales y la fórmula para la longitud de una curva de la siguiente manera:

El lema de estimación se utiliza con mayor frecuencia como parte de los métodos de integración de contornos con la intención de demostrar que la integral sobre una parte de un contorno tiende a cero cuando | z | tiende a infinito. A continuación se muestra un ejemplo de un caso de este tipo.

Ejemplo

El contorno Γ .

Problema. Encuentra un límite superior para

donde Γ es el semicírculo superior | z | = a con radio a > 1 recorrido una vez en sentido antihorario.

Solución. Primero observe que la longitud del camino de integración es la mitad de la circunferencia de un círculo con radio a , por lo tanto

A continuación buscamos un límite superior M para el integrando cuando | z | = a . Por la desigualdad triangular vemos que

por lo tanto

porque | z | = a > 1 en Γ . Por lo tanto

Por lo tanto, aplicamos el lema de estimación con M = 1/( un 2 − 1) 2 . El límite resultante es

Véase también

Referencias