stringtranslate.com

Constante de Prouhet-Thue-Morse

En matemáticas , la constante de Prouhet-Thue-Morse , llamada así por Eugène Prouhet  [fr] , Axel Thue y Marston Morse , es el número, denotado por τ , cuya expansión binaria 0,01101001100101101001011001101001... viene dada por la constante de Prouhet-Thue-Morse. secuencia . Eso es,

donde t n es el enésimo elemento de la secuencia de Prouhet-Thue-Morse.

Otras representaciones

La constante de Prouhet-Thue-Morse también se puede expresar, sin utilizar t n , como un producto infinito, [1]

Esta fórmula se obtiene sustituyendo x = 1/2 en la serie generadora de t n

La expansión fraccionaria continua de la constante es [0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1,…] (secuencia A014572 en el OEIS )

Yann Bugeaud y Martine Queffélec demostraron que una infinidad de cocientes parciales de esta fracción continua son 4 o 5, y una infinidad de cocientes parciales son mayores o iguales a 50. [2]

Trascendencia

Kurt Mahler demostró en 1929 que la constante de Prouhet-Thue-Morse era trascendental .

También demostró que el número

también es trascendental para cualquier número algebraico α, donde 0 < | α | < 1.

Yann Bugaeud demostró que la constante de Prouhet-Thue-Morse tiene una medida de irracionalidad de 2. [4]

Apariciones

La constante de Prouhet-Thue-Morse aparece en probabilidad . Si se elige al azar un idioma L superior a {0, 1}, lanzando una moneda al aire para decidir si cada palabra w está en L , la probabilidad de que contenga al menos una palabra para cada longitud posible es [5]

Ver también

Notas

  1. ^ Weisstein, Eric W. "Constante de Thue-Morse". MundoMatemático .
  2. ^ Bugeaud, Yann; Queffélec, Martine (2013). "Sobre la aproximación racional del número binario Thue-Morse-Mahler". Diario de secuencias enteras . 16 (13.2.3).
  3. ^ Mahler, Kurt (1929). "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen". Matemáticas. Annalen . 101 : 342–366. doi :10.1007/bf01454845. JFM  55.0115.01. S2CID  120549929.
  4. ^ Bugaeud, Yann (2011). "Sobre la aproximación racional a los números de Thue-Morse-Mahler". Anales del Instituto Fourier . 61 (5): 2065-2076. doi : 10.5802/aif.2666 .
  5. ^ Allouche, Jean-Paul; Shalit, Jeffrey (1999). "La ubicua secuencia Prouhet-Thue-Morse". Matemática Discreta e Informática Teórica : 11.

Referencias

enlaces externos