stringtranslate.com

Stellar classification

A simple chart for classifying the main star types using Harvard classification

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O type) to the coolest (M type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some non-stellar objects have also been assigned letters: D for white dwarfs and L, T and Y for Brown dwarfs.

In the MK system, a luminosity class is added to the spectral class using Roman numerals. This is based on the width of certain absorption lines in the star's spectrum, which vary with the density of the atmosphere and so distinguish giant stars from dwarfs. Luminosity class 0 or Ia+ is used for hypergiants, class I for supergiants, class II for bright giants, class III for regular giants, class IV for subgiants, class V for main-sequence stars, class sd (or VI) for subdwarfs, and class D (or VII) for white dwarfs. The full spectral class for the Sun is then G2V, indicating a main-sequence star with a surface temperature around 5,800 K.

Conventional colour description

The conventional colour description takes into account only the peak of the stellar spectrum. In actuality, however, stars radiate in all parts of the spectrum. Because all spectral colours combined appear white, the actual apparent colours the human eye would observe are far lighter than the conventional colour descriptions would suggest. This characteristic of 'lightness' indicates that the simplified assignment of colours within the spectrum can be misleading. Excluding colour-contrast effects in dim light, in typical viewing conditions there are no green, cyan, indigo, or violet stars. "Yellow" dwarfs such as the Sun are white, "red" dwarfs are a deep shade of yellow/orange, and "brown" dwarfs do not literally appear brown, but hypothetically would appear dim red or grey/black to a nearby observer.

Modern classification

The modern classification system is known as the Morgan–Keenan (MK) classification. Each star is assigned a spectral class (from the older Harvard spectral classification, which did not include luminosity[1]) and a luminosity class using Roman numerals as explained below, forming the star's spectral type.

Other modern stellar classification systems, such as the UBV system, are based on color indices—the measured differences in three or more color magnitudes.[2] Those numbers are given labels such as "U−V" or "B−V", which represent the colors passed by two standard filters (e.g. Ultraviolet, Blue and Visual).

Harvard spectral classification

The Harvard system is a one-dimensional classification scheme by astronomer Annie Jump Cannon, who re-ordered and simplified the prior alphabetical system by Draper (see History). Stars are grouped according to their spectral characteristics by single letters of the alphabet, optionally with numeric subdivisions. Main-sequence stars vary in surface temperature from approximately 2,000 to 50,000 K, whereas more-evolved stars can have temperatures above 100,000 K[citation needed]. Physically, the classes indicate the temperature of the star's atmosphere and are normally listed from hottest to coldest.

A common mnemonic for remembering the order of the spectral type letters, from hottest to coolest, is "Oh, Be A Fine Guy/Girl: Kiss Me!", or another one is "Our Bright Astronomers Frequently Generate Killer Mnemonics!" .[11]

The spectral classes O through M, as well as other more specialized classes discussed later, are subdivided by Arabic numerals (0–9), where 0 denotes the hottest stars of a given class. For example, A0 denotes the hottest stars in class A and A9 denotes the coolest ones. Fractional numbers are allowed; for example, the star Mu Normae is classified as O9.7.[12] The Sun is classified as G2.[13]

The fact that the Harvard classification of a star indicated its surface or photospheric temperature (or more precisely, its effective temperature) was not fully understood until after its development, though by the time the first Hertzsprung–Russell diagram was formulated (by 1914), this was generally suspected to be true.[14] In the 1920s, the Indian physicist Meghnad Saha derived a theory of ionization by extending well-known ideas in physical chemistry pertaining to the dissociation of molecules to the ionization of atoms. First he applied it to the solar chromosphere, then to stellar spectra.[15]

Harvard astronomer Cecilia Payne then demonstrated that the O-B-A-F-G-K-M spectral sequence is actually a sequence in temperature.[16] Because the classification sequence predates our understanding that it is a temperature sequence, the placement of a spectrum into a given subtype, such as B3 or A7, depends upon (largely subjective) estimates of the strengths of absorption features in stellar spectra. As a result, these subtypes are not evenly divided into any sort of mathematically representable intervals.

Yerkes spectral classification

The Yerkes spectral classification, also called the MK, or Morgan-Keenan (alternatively referred to as the MKK, or Morgan-Keenan-Kellman)[17][18] system from the authors' initials, is a system of stellar spectral classification introduced in 1943 by William Wilson Morgan, Philip C. Keenan, and Edith Kellman from Yerkes Observatory.[19] This two-dimensional (temperature and luminosity) classification scheme is based on spectral lines sensitive to stellar temperature and surface gravity, which is related to luminosity (whilst the Harvard classification is based on just surface temperature). Later, in 1953, after some revisions to the list of standard stars and classification criteria, the scheme was named the Morgan–Keenan classification, or MK,[20] which remains in use today.

Denser stars with higher surface gravity exhibit greater pressure broadening of spectral lines. The gravity, and hence the pressure, on the surface of a giant star is much lower than for a dwarf star because the radius of the giant is much greater than a dwarf of similar mass. Therefore, differences in the spectrum can be interpreted as luminosity effects and a luminosity class can be assigned purely from examination of the spectrum.

A number of different luminosity classes are distinguished, as listed in the table below.[21]

Marginal cases are allowed; for example, a star may be either a supergiant or a bright giant, or may be in between the subgiant and main-sequence classifications. In these cases, two special symbols are used:

For example, a star classified as A3-4III/IV would be in between spectral types A3 and A4, while being either a giant star or a subgiant.

Sub-dwarf classes have also been used: VI for sub-dwarfs (stars slightly less luminous than the main sequence).

Nominal luminosity class VII (and sometimes higher numerals) is now rarely used for white dwarf or "hot sub-dwarf" classes, since the temperature-letters of the main sequence and giant stars no longer apply to white dwarfs.

Occasionally, letters a and b are applied to luminosity classes other than supergiants; for example, a giant star slightly less luminous than typical may be given a luminosity class of IIIb, while a luminosity class IIIa indicates a star slightly brighter than a typical giant.[31]

A sample of extreme V stars with strong absorption in He II λ4686 spectral lines have been given the Vz designation. An example star is HD 93129 B.[32]

Spectral peculiarities

Additional nomenclature, in the form of lower-case letters, can follow the spectral type to indicate peculiar features of the spectrum.[33]

For example, 59 Cygni is listed as spectral type B1.5Vnne,[40] indicating a spectrum with the general classification B1.5V, as well as very broad absorption lines and certain emission lines.

History

The reason for the odd arrangement of letters in the Harvard classification is historical, having evolved from the earlier Secchi classes and been progressively modified as understanding improved.

Secchi classes

During the 1860s and 1870s, pioneering stellar spectroscopist Angelo Secchi created the Secchi classes in order to classify observed spectra. By 1866, he had developed three classes of stellar spectra, shown in the table below.[41][42][43]

In the late 1890s, this classification began to be superseded by the Harvard classification, which is discussed in the remainder of this article.[44][45][46]

The Roman numerals used for Secchi classes should not be confused with the completely unrelated Roman numerals used for Yerkes luminosity classes and the proposed neutron star classes.

Draper system

In the 1880s, the astronomer Edward C. Pickering began to make a survey of stellar spectra at the Harvard College Observatory, using the objective-prism method. A first result of this work was the Draper Catalogue of Stellar Spectra, published in 1890. Williamina Fleming classified most of the spectra in this catalogue and was credited with classifying over 10,000 featured stars and discovering 10 novae and more than 200 variable stars.[52] With the help of the Harvard computers, especially Williamina Fleming, the first iteration of the Henry Draper catalogue was devised to replace the Roman-numeral scheme established by Angelo Secchi.[53]

The catalogue used a scheme in which the previously used Secchi classes (I to V) were subdivided into more specific classes, given letters from A to P. Also, the letter Q was used for stars not fitting into any other class.[50][51] Fleming worked with Pickering to differentiate 17 different classes based on the intensity of hydrogen spectral lines, which causes variation in the wavelengths emanated from stars and results in variation in color appearance. The spectra in class A tended to produce the strongest hydrogen absorption lines while spectra in class O produced virtually no visible lines. The lettering system displayed the gradual decrease in hydrogen absorption in the spectral classes when moving down the alphabet. This classification system was later modified by Annie Jump Cannon and Antonia Maury to produce the Harvard spectral classification scheme.[52][54]

The old Harvard system (1897)

In 1897, another astronomer at Harvard, Antonia Maury, placed the Orion subtype of Secchi class I ahead of the remainder of Secchi class I, thus placing the modern type B ahead of the modern type A. She was the first to do so, although she did not use lettered spectral types, but rather a series of twenty-two types numbered from I–XXII.[55][56]

Because the 22 Roman numeral groupings did not account for additional variations in spectra, three additional divisions were made to further specify differences: Lowercase letters were added to differentiate relative line appearance in spectra; the lines were defined as:[57]

Antonia Maury published her own stellar classification catalogue in 1897 called "Spectra of Bright Stars Photographed with the 11 inch Draper Telescope as Part of the Henry Draper Memorial", which included 4,800 photographs and Maury's analyses of 681 bright northern stars. This was the first instance in which a woman was credited for an observatory publication.[58]

The current Harvard system (1912)

In 1901, Annie Jump Cannon returned to the lettered types, but dropped all letters except O, B, A, F, G, K, M, and N used in that order, as well as P for planetary nebulae and Q for some peculiar spectra. She also used types such as B5A for stars halfway between types B and A, F2G for stars one fifth of the way from F to G, and so on.[59][60]

Finally, by 1912, Cannon had changed the types B, A, B5A, F2G, etc. to B0, A0, B5, F2, etc.[61][62] This is essentially the modern form of the Harvard classification system. This system was developed through the analysis of spectra on photographic plates, which could convert light emanated from stars into a readable spectrum.[63]

Mount Wilson classes

A luminosity classification known as the Mount Wilson system was used to distinguish between stars of different luminosities.[64][65][66] This notation system is still sometimes seen on modern spectra.[67]

Spectral types

The stellar classification system is taxonomic, based on type specimens, similar to classification of species in biology: The categories are defined by one or more standard stars for each category and sub-category, with an associated description of the distinguishing features.[68]

"Early" and "late" nomenclature

Stars are often referred to as early or late types. "Early" is a synonym for hotter, while "late" is a synonym for cooler.

Depending on the context, "early" and "late" may be absolute or relative terms. "Early" as an absolute term would therefore refer to O or B, and possibly A stars. As a relative reference it relates to stars hotter than others, such as "early K" being perhaps K0, K1, K2 and K3.

"Late" is used in the same way, with an unqualified use of the term indicating stars with spectral types such as K and M, but it can also be used for stars that are cool relative to other stars, as in using "late G" to refer to G7, G8, and G9.

In the relative sense, "early" means a lower Arabic numeral following the class letter, and "late" means a higher number.

This obscure terminology is a hold-over from a late nineteenth century model of stellar evolution, which supposed that stars were powered by gravitational contraction via the Kelvin–Helmholtz mechanism, which is now known to not apply to main-sequence stars. If that were true, then stars would start their lives as very hot "early-type" stars and then gradually cool down into "late-type" stars. This mechanism provided ages of the Sun that were much smaller than what is observed in the geologic record, and was rendered obsolete by the discovery that stars are powered by nuclear fusion.[69] The terms "early" and "late" were carried over, beyond the demise of the model they were based on.

Class O

Spectra of a hypothetical O5V star

O-type stars are very hot and extremely luminous, with most of their radiated output in the ultraviolet range. These are the rarest of all main-sequence stars. About 1 in 3,000,000 (0.00003%) of the main-sequence stars in the